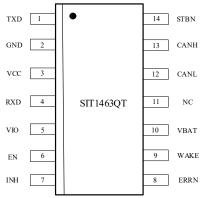


特点

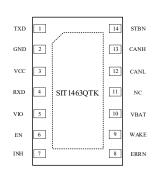
- ➤ 兼容 ISO 11898-2:2016、SAE J2284-1 to SAE J2284-5 和 SAE J1939-14 标准
- ➤ AEC-Q100 Grade 1 认证
- ▶ 具有 CiA 601-4:2019 中定义的 CAN 信号改进能力,可显著降低网络中的信号振铃效应
- ▶ 低功耗休眠及待机模式
- ▶ 带远程唤醒功能以及本地唤醒功能
- ▶ 总线端口±58V 耐压
- ▶ ±30V接收器共模输入电压
- ▶ I/O 口支持 1.8V、3.3V 或 5V MCU
- ▶ 驱动器 (TXD) 显性超时功能

- ▶ VBAT、VCC 和 VIO 电源引脚上具有欠压保护
- ➤ 高速 CAN, 支持 8Mbps CAN With Flexible Data-Rate (灵活数据速率)
- ▶ -40℃至 150℃结温范围,且内置过温保护
- ▶ 高抗电磁干扰能力
- ▶ 未上电节点不干扰总线
- ▶ 提供 SOP14 和小引脚 DFN4.5×3-14 封装, DFN4.5×3-14 具有改进的自动光学检测 (AIO)能力

描述


SIT1463Q 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,支持 8Mbps 灵活数据速率 (Flexible Data-Rate),具有在总线与 CAN 协议控制器之间进行差分信号传输的能力。SIT1463Q 具有 CiA 601-4:2019 中定义的 CAN 信号改善能力 (SIC)。CAN 信号的改善显著减少了网络中的信号振铃,使 CAN FD 通信能够在具有多个末端节点的大型网络中稳定运行。SIT1463Q 总线端口耐压可达-58V 至+58V,接收器共模输入电压达到-30V 至+30V。SIT1463Q 采用多电源供电,拥有多种系统保护和诊断功能以提高器件和 CAN 的稳定性。另外,SIT1463Q 拥有五种工作模式:正常工作模式、静音模式、待机模式、休眠模式和关断模式,在低功耗模式下支持本地唤醒与远程唤醒,所提供的低功耗模式管理可极大节省 CAN 总线应用系统的功耗。

应用领域:汽车和运输


- ▶ 车身控制模块
- > 汽车网关
- ▶ 高级辅助驾驶系统(ADAS)
- ▶ 信息和娱乐

引脚分布图

DFN4.5×3-14 封装引脚

引脚定义

引脚序号	引脚名称	引脚功能
1	TXD	发送器数据输入端
2	GND	地
3	VCC	5V 总线供电电源
4	RXD	接收器数据输出端
5	VIO	I/O 口供电电源
6	EN	使能控制输入端
7	INH	用于控制外部稳压器的工作状态,发生唤醒事件后置为高电平
8	ERRN	错误指示输出端
9	WAKE	本地唤醒输入端口
10	VBAT	电池供电电源
11	NC	无连接
12	CANL	低电位 CAN 总线输入输出端
13	CANH	高电位 CAN 总线输入输出端
14	STBN	待机控制输入端

结构框图

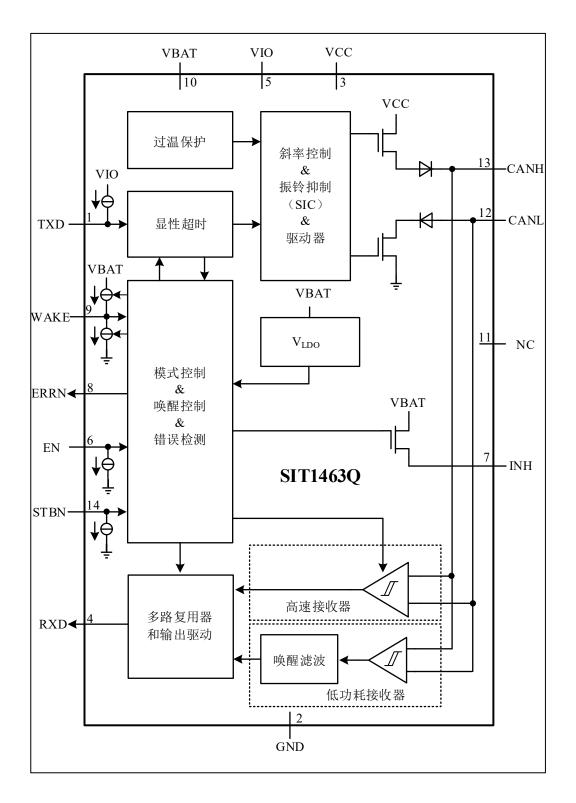


图 1 SIT1463Q 结构框图

建议工作状态

参数	符号	大小	单位
VBAT 供电电压	VBAT	4.5~40	V
VCC 供电电压	VCC	4.5~5.5	V
VIO 供电电压	VIO	1.7~5.5	V
逻辑输出引脚 高电平输出电流 (RXD&ERRN)	Ioh(logic)	>-2	mA
逻辑输出引脚 低电平输出电流 (RXD&ERRN)	I _{OL(LOGIC)}	<2	mA
INH 输出电流	I _{O(INH)}	<4	mA
环境温度	T_{amb}	-40~125	°C

极限参数

参数	符号	大小	单位
电池电源电压	VBAT	-0.3~45	V
总线供电电源电压	VCC, VIO	-0.3~7	V
MCU 侧端口	TXD, RXD, EN STBN, ERRN	-0.3~7	V
总线侧输入电压	CANH, CANL	-58~+58	V
本地唤醒引脚	WAKE	-45~45 和 -0.3~VBAT+0.3	V
使能输出	INH	-0.3~45 和 -0.3~VBAT+0.3	V
总线差分输入电压	V _(CANH-CANL)	-58~58	V
存储温度范围	$T_{ m stg}$	-55~150	°C
结温	$T_{\rm j}$	-40~150	°C

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

热阻信息

符号	参数	测试条件	大小	单位
D	Junction-to-ambient	SOP14	91	V
$R_{ heta JA}$	thermal resistance	DFN4.5×3-14	36	V
D	Junction-to-case thermal	SOP14	42	V
$R_{ heta JC}$	resistance	DFN4.5×3-14	32	V

模式跳转

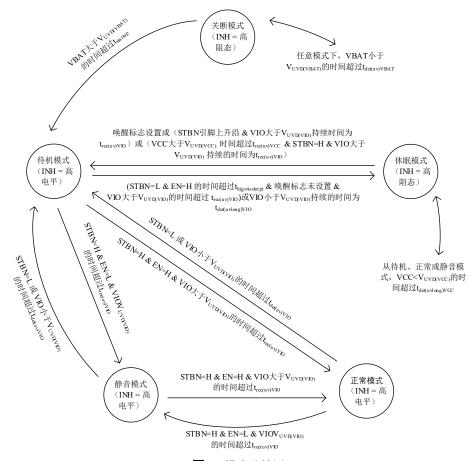


图 2 模式跳转图

系统工作模式

正常模式

VCC、VIO 和 VBAT 电源正常供电,将 EN 和 STBN 都置为高电平,器件进入正常工作模式。在正常模式下,驱动器和高速接收器使能,驱动器将 TXD 上的数字输入信号转换为总线模拟电平,同时接收器监测总线电平并将其反映至 RXD。在正常工作模式下,INH 为高电平。

静音模式

VCC、VIO 和 VBAT 电源正常供电,STBN 为高电平,将 EN 置为低电平,器件进入静音模式。静音模式也可称为只听模式或者只接收模式。在此模式下,驱动器禁能,高速接收器使能,CANH 与 CANL 的显隐性信号通过接收器反映至 RXD 端口,并且总线将被偏置到 0.5VCC,INH 被拉高。

待机模式

特机模式是芯片的第一级低功耗模式。在待机模式下,INH 为高电平,驱动器和高速接收器禁能,低功耗接收器使能,器件仍可检测本地唤醒和远程唤醒事件。同时,芯片 VBAT 初始上电时,一旦 VBAT 电压超过 $V_{UVD(VBAT)}$ 的时间大于 $t_{startup}$,芯片将进入待机模式,INH 被拉高。

休眠模式

休眠模式是功耗最低的一种工作模式。有三种方法可以进入休眠模式:

- ▶ VBAT 正常供电, VCC 欠压时间超过 tdet(uvlong)VCC;
- ▶ VBAT 正常供电, VIO 欠压时间超过 tdet(uvlong)VIO;
- ▶ 电源正常供电, EN 为高,将 STBN 置低,当 t>tgo-to-sleep 可进入休眠模式。

在睡眠模式下,驱动器和高速接收器禁能,低功耗接收器使能,输出端口 INH 处于高阻状态,可指示关闭外部稳压器,收发器与 MCU 的 VCC 电源将不可用,在此状态下,SIT1463Q 通过电池引脚 VBAT 保持供电,以此保证本地唤醒和远程唤醒的监测工作,出现首次唤醒事件后,INH将被拉高。

关断模式

无论其它引脚是什么状态(比如 EN、STBN、VIO、VCC),一旦 VBAT 欠压时长超过 t_{det(uv)VBAT},器件即进入关断模式。在关断模式下,输出引脚 INH、ERRN、RXD 及总线引脚均处于高阻态。

CAN 模式转换

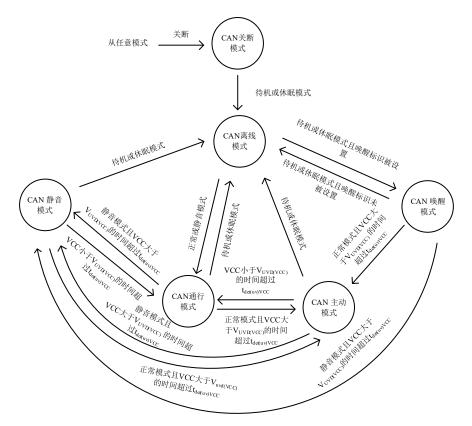


图 3 CAN 状态转换图

CAN 工作模式

CAN 关断模式

当器件处于关断模式时,CAN 工作模式将进入 CAN 关断模式。 总线引脚和 RXD 处于高阻态。驱动器、低功耗接收器和高速接收器禁用。

CAN 离线模式

当器件处于休眠或待机模式且无唤醒标志时,CAN 工作模式将进入 CAN 离线模式。 总线引脚偏置到地,RXD 为高。驱动器和高速接收器禁用。低功耗接收器使能。在这种状态 下,收发器主要通过电池供电引脚 VBAT 进行供电,以此保证本地唤醒和远程唤醒的监控工作。

CAN 唤醒模式

当器件处于休眠或待机模式且无唤醒标志时, CAN 工作模式将进入 CAN 唤醒模式。 总线引脚偏置到地, RXD 为低。驱动器和高速接收器禁用。低功耗接收器使能。

CAN 通行模式

当器件处于正常或静音模式且 VCC 欠压时间少于 t_{det(uv)VCC} 时, CAN 工作模式将进入 CAN 通行模式。

总线引脚偏置到地,高速接收器和驱动器禁用。低功耗接收器监控 CANH 和 CANL 的显隐信号并反映至 RXD。

CAN 主动模式

当器件处于正常模式且电源正常供电, CAN 工作模式将进入 CAN 主动模式。

总线引脚偏置到 VCC/2。驱动器和高速接收器处于完全工作状态,低功耗接收器关断。驱动器将 TXD 上的数字输入信号转换为总线模拟电平,同时接收器监测总线电平并将其反映至 RXD。在此模式下,TXD 需要出现高电平至低电平的跳变后,数据才能开始传输。

CAN 静音模式

当器件处于静音模式且电源正常供电, CAN 工作模式将进入 CAN 静音模式。

总线引脚偏置到 VCC/2。驱动器和低功耗接收器均关断,高速接收器使能。总线上的显隐信号通过高速接收器反映至 RXD。

功能模式表

VCC	VIO	VABT	EN	STBN	唤醒 标志	模式	驱动器	高速接 收器	低功耗 接收器	RXD	总线 状态	INH
正常	正常	正常	Н	Н	X	正常	使能	使能	禁能	跟随 总线	VCC/2	Н
正常	正常	正常	L	Н	X	静音	禁能	使能	禁能	跟随 总线	VCC/2	Н
正常	正常	正常	Н	L	清除	休眠	禁能	禁能	使能	Н	GND	Z
正常	正常	正常	Н	L	设置	待机	禁能	禁能	使能	L	GND	Н
正常	正常	正常	L	L	清除	待机	禁能	禁能	使能	Н	GND	Н
正常	正常	正常	L	L	设置	待机	禁能	禁能	使能	L	GND	Н
长时间 欠压	正常	正常	X	X	X	休眠	禁能	禁能	使能	Н	GND	Z
正常	长时间 欠压	正常	X	X	X	休眠	禁能	禁能	使能	Z	GND	Z
X	X	欠压	X	X	X	关断	禁能	禁能	禁能	Z	Z	Z

注: H=高电平; L=低电平; Z=高阻态; X=不关心。

驱动器状态表

工作模式	TXD 输入	总线	总线驱动状态	
工作模式	IAD 棚八	CANH	CANL	必线船纵伙心
工学提升	L	Н	L	显性
正常模式	H 或 Open	Z	Z	总线偏置到 VCC/2
静音模式	X	Z	Z	总线偏置到 VCC/2
待机模式	X	Z	Z	总线偏置到 GND
休眠模式	X	Z	Z	总线偏置到 GND
关断模式	X	Z	Z	高阻态

注: H=高电平; L=低电平; Z=高阻态; X=不关心。

接收器功能表

工作模式	总线差分输入 V _{OD} =CANH-CANL	总线状态	RXD 输出
T 24. LH _ L	V _{OD} ≥0.9V	显性	L
正常模式 和静音模式	$0.9V > V_{OD} > 0.5V$?	?
和拼 日 沃风	V _{OD} ≤0.5V	隐性	Н
	V _{OD} ≥1.15V	显性	
待机模式和休眠模式	1.15V>V _{OD} >0.4V	?	H, 当出现唤醒标志时为 L
	$V_{OD} \leq 0.4V$	隐性	二田%·汉胜你心时/9°E

注: H=高电平; L=低电平; ?=不确定; 电源正常供电。

内部标志信号

标志信号	出现原因	 外部指示 	标志信号清除	备注
上电标志	VBAT 上电	进入静音模式(从待 机模式,休眠模式) ERRN=L	进入正常模式	
唤醒请求标志	远程唤醒,本地唤 醒,初始上电	进入待机模式或休眠 模式 ERRN=RXD=L	进入正常工作模式, VCC 或 VIO 欠压	
唤醒源标志(1)	远程唤醒,本地唤 醒,初始上电	进入正常模式: ERRN=L 指示本地唤 醒	离开正常模式,VCC 或 VIO 欠压	上电标志的建立会重置 唤醒源标志
本地错误标志	TXD 显性超时	当从正常工作模式进 入静音模式 ERRN=L	RXD=L&TXD=H 或 进入正常工作模式	一旦出现 TXD 显性超时,驱动器将被禁能

标志信号	出现原因	外部指示	标志信号清除	备注
	TXD 短路至 RXD			一旦出现 TXD 短路至 RXD,驱动器将被禁能
	总线显性超时		RXD= H;进入正常 工作模式	出现总线超时,驱动器 仍在使能状态
	过温保护		结温恢复正常并且 RXD=L&TXD=H;结 温恢复正常并且重新 跳转至正常工作模式	一旦出现过温状态,驱 动器将被禁能

(1) 唤醒源标志仅会识别第一个唤醒请求信号;

设备通过上述一系列标志信号进行系统诊断,并指示失效原因。MCU 可以通过一些模式切换和 收发器芯片 ERRN 和 RXD 引脚的指示来判断系统内部工作状态或失效原因。

上电标志

上电标志特指电池电源 VBAT 的上电事件。当 VBAT 从低于 V_{UVDVBAT} 的电压恢复到正常工作电压时,上电标志会被设置,一旦器件从待机模式或者休眠模式进入静音模式,ERRN 会被拉低,以此指示上电标志已设置。当进入正常工作模式,上电标志会被清除。上电标志设置唤醒请求标志和唤醒源标志。

唤醒请求标志

SIT1463Q 可通过两种方式实现低功耗唤醒功能: 本地唤醒和远程唤醒。

本地唤醒

SIT1463Q 通过 WAKE 端口实现本地唤醒的功能,在待机模式或者休眠模式下,只要 WAKE 引脚出现有效的上升沿或者下降沿,即被检测为本地唤醒事件:

有效的上升沿指 WAKE 端口的电压从低于 $V_{th(WAKE)}$ 的电压跳转至高于 $V_{th(WAKE)}$ 的电压,并且此跳转的持续时间大于 $t_{wake(local)}$,即可被认为是有效的上升沿,如图 4 所示;有效的下降沿指 WAKE 端口的电压从高于 $V_{th(WAKE)}$ 的电压跳转至低于 $V_{th(WAKE)}$ 的电压,并且此跳转的持续时间大于 $t_{wake(local)}$,即可被认为是有效的下降沿,如图 5 所示。任何持续时间小于 $t_{wake(local)}$ 的跳转以及未跨越阈值电压 $V_{th(WAKE)}$ 的跳转都将会被滤除。

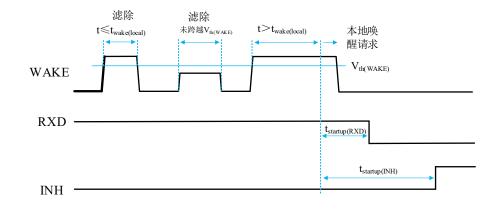


图 4 WAKE 上升沿本地唤醒示意图

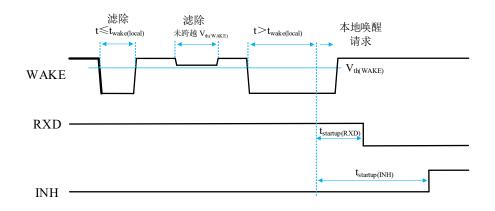


图 5 WAKE 下降沿本地唤醒示意图

远程唤醒

SIT1463Q 通过低功耗接收器实现远程唤醒功能来通知 MCU 总线已被激活,节点应恢复正常工作。在休眠模式下,出现一帧有效的远程唤醒请求信号 (WUP),器件即被唤醒,并跳转至待机模式,tstartup(RXD)后,RXD 会被拉低,tstartup(INH)后,INH 被拉高。

根据 ISO 11898-2:2016,完整的 WUP 包括: 一段已过滤的显性电平(持续时间大于 $t_{wake(dom)}$),一段已过滤的隐性电平(持续时间大于 $t_{wake(rec)}$)和另一段已过滤的显性电平(持续时间大于 $t_{wake(dom)}$)。此段显性-隐性-显性电平信号必须在 $t_{wake(timeout)}$ 时间内出现,否则内部的唤醒逻辑将被复位,并重新开始对总线的监测。

RXD 引脚将一直保持高电平直到唤醒事件被触发,上述提到的显性电平和隐性电平如果持续时间低于 twake(busdom)和 twake(busrec)都会被忽略(滤除),如果在接收到有效的唤醒模式时发生以下任何一个事件,都不会响应唤醒事件:

- (1) 器件切换到正常工作模式;
- (2) 完整的唤醒请求帧没有在 twake(timeout)内被接收到;
- (3) 检测到 VCC 或 VIO 欠压 (UVD_{NOM} 标志信号被设置)。

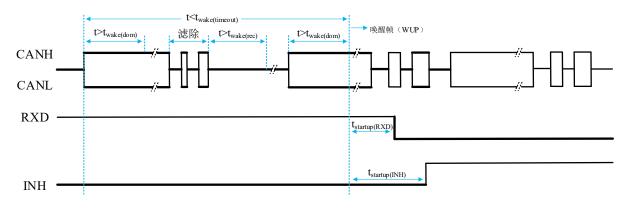


图 6 远程唤醒示意图

唤醒源标志

SIT1463Q 通过唤醒源标志可识别出唤醒源,唤醒源标志可以在芯片进入正常模式时,通过 ERRN 引脚的电平来表示。若通过 WAKE 引脚给予的本地唤醒请求产生唤醒标志,则跳转至正常工作模式后,ERRN 引脚表现为低电平。芯片离开正常工作模式的同时也会清除唤醒源标志。这个标志也会在

初始上电时产生。

本地错误标志

SIT1463Q 可检测四种本地错误事件: TXD 显性超时, TXD 与 RXD 短路, 总线显性超时, 过温 保护。只要其中的任何一种事件的发生,都会生成一个本地错误标志,当器件从正常工作模式跳转至 静音模式时, ERRN 会被拉低, 从而指示出现了本地错误标志。

TXD 显性超时

在正常工作模式下,如果引脚 TXD 上的低电平持续时间超过内部定时器值 tdom(TXD),发送器将被 禁用,驱动总线进入隐性状态。可防止引脚 TXD 因硬件或软件应用故障而被强制为永久低电平导致 总线线路被驱动至永久显性状态 (阻塞所有网络通信)。

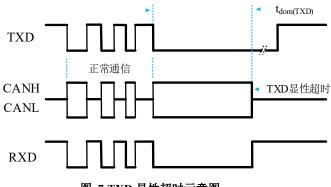


图 7 TXD 显性超时示意图

TXD与RXD短路

SIT1463Q 具有 TXD 与 RXD 短路的保护功能,可避免本地器件出现周期性的死锁情况。在正常 工作模式或者静音模式下,如果器件的 TXD 与 RXD 发生了短路情况,并且短路的持续时间超过 tdom(TXD),则器件会认为发生了TXD与RXD的短路情况,本地错误标志建立,驱动器将被禁能。

总线显性超时

当总线出现短路情况时,如果总线出现持续时间大于内部定时器值 tdom(BUS)的显性电平,会被认 定为出现总线显性超时事件,本地错误标志建立。

过温保护

SIT1463Q 具有过温保护功能,如果器件结温超过过温关断温度 T_{i(sd)},总线驱动器电路将会被关 断,从而阻断 TXD 到总线的传输路径,所以在热关断期间 CAN 总线的电平会被偏置在隐性状态,同 时芯片的其它部分仍然保持正常工作。因为驱动管是主要的耗能部件, 所以关断驱动管可以降低功耗 从而降低芯片温度。

直流参数

在推荐的工作条件下进行测试: VBAT=4.5V 至 40V、VCC=4.5V 至 5.5V、VIO=1.7V 至 5.5V、 T_{amb} =-40°C 至 125°C。如无另外说明,所有的典型值均在 T_{amb} =25°C、电源电压 VBAT=12V、VCC=5V、VIO=5V、 R_L =60Ω 的条件下测得。

参数	符号	测试条件	最小	典型	最大	単位
VBAT 供电特性		<u> </u>		Į	Į	<u>l</u>
VBAT 供电电压	VBAT		4.5		40	V
		正常工作模式 或者静音模式		60	100	μА
VBAT 供电电流	I_{BAT}	待机模式		18	28	μΑ
		休眠模式		16	26	μΑ
	**	VBAT 欠压阈值	4		4.4	V
VBAT 欠压检测	V _{UVD(VBAT)}	VBAT 欠压恢复阈值	4.1		4.5	V
VCC 供电特性						•
VCC 供电电压	VCC		4.5		5.5	V
	Icc	正常工作显性 TXD=0V		42	70	mA
		正常工作隐性 TXD=VIO		4.3	7	mA
VCC 供电电流		静音模式		4.3	7	mA
		正常工作显性, TXD=0V,总线短路, -3V<(CANH=CANL)<40V			125	mA
		待机或休眠模式			3.5	μА
NGC 左下松河	37	VCC 欠压阈值	3.5	3.8		V
VCC 欠压检测	V _{UVD(VCC)}	VCC 欠压恢复阈值		4	4.2	V
VIO 供电特性						
VIO 供电电压	VIO		1.7		5.5	V
		正常工作显性,TXD=0V		110	250	μΑ
VIO 供电电流	I_{IO}	正常工作隐性或静音模 式,TXD=VIO			5	μА
		待机或休眠模式, TXD=VIO	2.5	μΑ		
WO を日本知	V	VIO 欠压阈值	1.4			V
VIO 欠压检测	V _{UVD(VIO)}	VIO 欠压恢复阈值			1.65	V

参数	符号	测试条件	最小	典型	最大	单位
TXD 端口特性					•	
TXD 端口高电平 输入电流	I _{IH(TXD)}	TXD=VIO	-1		1	μΑ
TXD 端口低电平 输入电流	I _{IL(TXD)}	TXD=0V	-150		20	μΑ
上拉电阻	R_{pu}		20		80	kΩ
未上电时 TXD 的漏电流	$I_{\text{off}(TXD)}$	VIO=0V, TXD=5.5V	-1		1	μΑ
输入高电平下限	V_{IH}		0.7VIO		VIO+0.3	V
输入低电平上限	V_{IL}		-0.3		0.3VIO	V
输入电容 ⁽¹⁾	Ci				10	pF
悬空逻辑电平	TXDo			Н		logic
RXD 端口特性		•				
RXD 端口高电平 输出电流	I _{OH(RXD)}	RXD=VIO-0.4V	-10	-5	-1	mA
RXD 端口低电平 输出电流	I _{OL(RXD)}	RXD=0.4V	1	5	10	mA
STBN 端口特性		•				
STBN 端口高电平 输入电流	I _{IH(STBN)}	STBN=VIO	20		110	μΑ
STBN 端口低电平 输入电流	I _{IL(STBN)}	STBN=0V	-1		1	μΑ
下拉电阻	R _{pu}		20		80	kΩ
未上电时 STBN 的漏电流	I _{off(STBN)}	VIO=0V, STBN=5.5V	-1		1	μΑ
输入高电平下限	V_{IH}		0.7VIO		VIO+0.3	V
输入低电平上限	V_{IL}		-0.3		0.3VIO	V
输入电容 ⁽¹⁾	Ci				10	pF
悬空逻辑电平	STBo			L		logic
EN 端口特性		•				
EN 端口高电平输入电流	I _{IH(EN)}	EN=VIO	20		110	μΑ
EN 端口低电平输入电流	I _{IL(EN)}	EN=0V	-1		1	μΑ
下拉电阻	R_{pu}		20		80	kΩ
未上电时 EN 的漏电流	I _{off(EN)}	VIO=0V, EN=5.5V	-1		1	μΑ
输入高电平下限	V_{IH}		0.7VIO		VIO+0.3	V
输入低电平上限	V_{IL}		-0.3		0.3VIO	V
输入电容 ⁽¹⁾	Ci				10	pF

参数	符号	测试条件	最小	典型	最大	单位
悬空逻辑电平	ENo			L		logic
ERRN 端口特性	•					•
ERRN 端口高电平 输出电流	Ioh(errn)	ERRN=VIO-0.4V	-50		-4	μА
ERRN 端口低电平 输出电流	Iol(errn)	ERRN=0.4V	0.1		2	mA
INH 端口特性						•
INH 端口高电平	$\triangle V_{H}$	$\Delta V_H = V_{BAT}$ -INH; INH =-1mA	0		1	V
压差	2.14	$\Delta V_{H}=V_{BAT}-INH;$ $INH=-2mA$	0		2	V
INH 端口漏电流	I_L	休眠模式或关断模式	-2	0	2	μΑ
短路输出电流	$I_{O(sc)}$	V _{INH} =0V	-15			mA
WAKE 端口特性						
WAKE 端口高电平 输入电流	I _{IH} (WAKE)	WAKE>2.6V	-8	-4	-2	μА
WAKE 端口低电平 输入电流	Iil(wake)	WAKE<1.8V	2	4	8	μА
高电平输入电压	V_{IH}		1.9	2.3	2.6	V
低电平输入电压	$V_{\rm IL}$		1.8	2.2	2.5	V
WAKE 引脚迟滞电压	Vhys			100		mV
总线; CANH 和 CANL 站						
CANH 输出电压 (显性)	V _{OH(D)}	正常工作模式,	2.75	3.5	4.5	V
CANL 输出电压 (显性)	V _{OL(D)}	TXD=0V, R_L =50 Ω 至 65 Ω	0.5	1.5	2.25	V
		正常工作模式, TXD=0V, R _L =50Ω 至 65Ω	1.5		3	V
总线输出差分电压 (显性)	V _{OD(D)}	正常工作模式, TXD=0V, R _L =45Ω 至 70Ω	1.4		3.3	V
		正常工作模式, TXD=0V, R _L =2240Ω	1.5		5	V
总线输出电压(隐性)	V _{O(R)}	正常工作模式 或静音模式, TXD=VIO, 无负载	2	0.5VCC	3	V

参数	符号	测试条件	最小	典型	最大	单位
总线差分输出电压 (隐性)	V _{OD(R)}	正常工作模式 或静音模式, TXD=VIO,无负载	-500		50	mV
总线输出电压 (总线偏置到地)	V _{O(S)}	休眠模式或待机模式, 无负载	-0.1		0.1	V
总线差分输出电压 (总线偏置到地)	V _{OD(S)}	休眠模式或待机模式, 无负载	-0.2		0.2	V
显性输出电压对称性	$V_{\text{dom}(TX)\text{sym}}$	V _{dom(TX)sym} =VCC- CANH - CANL	-400		400	mV
输出电压对称性 (1)	V _{TXsym}	V_{TXsym} = CANH + CANL, R_L = 60Ω , C_{SPLIT} = $4.7nF$, f_{TXD} = $250kHz$ 、 $1MHz$ 或 $2.5MHz$	0.9V _{CC}		1.1Vcc	V
显性隐性共模 输出电压差	V _{cm(step)}	图 10,图 13	-150		150	mV
显性隐性共模 峰峰值 ⁽¹⁾	V _{cm(p-p)}	图 10,图 13	-300		300	mV
显性短路输出电流	I	正常模式,TXD=0V, CANH=-15V 至 40V	-100	-70		mA
业性难价制品电机	Io(sc)dom	正常模式,TXD=0V, CANL=-15V 至 40V		70	100	mA
隐性短路输出电流	Io(sc)rec	正常模式,TXD=VIO, CANH=CANL=-27V 至 32V	-3		3	mA
接收器差分阈值电压	$V_{ ext{th}(RX) ext{dif}}$	正常模式 或静音模式, -30V≤V _{CM} ≤30V	0.5		0.9	V
		待机模式或睡眠模式, -12V≤V _{CM} ≤12V	0.4		1.15	V
接收器阈值电压 迟滞区间	V _{hys(RX)dif}	正常模式或静音模式, -30V≤V _{CM} ≤30V	50	120	400	mV
· · · · · · · · · · · · · · · · · · ·	v	正常模式或静音模式, -30V≤V _{CM} ≤30V	-3		0.5	V
接收器隐性电压区间	V _{rec(RX)}	待机模式或休眠模式, -12V≤V _{CM} ≤12V	-3		0.4	V
		正常模式或者静音模式, -30V < V _{CM} < 30V	0.9		8	V
接收器显性电压区间	$V_{\text{dom(RX)}}$	待机模式或休眠模式, -12V≤V _{CM} ≤12V	1.15		8	V

参数	符号	测试条件	最小	典型	最大	单位
总线漏电流	I_{L}	VCC=VIO=VBAT=0V,	-5		5	μΑ
CANH、CANL 输入电阻	R _{IN}	CANH=CANL=5V -2V≤CANH≤7V -2V≤CANL≤7V	25	40	50	kΩ
CANH、CANL 差分 输入电阻	$R_{i(\text{diff})}$	-2V≤CANH≤7V -2V≤CANL≤7V	50	80	100	kΩ
CANH、CANL 输入 电阻失配度	$\triangle R_{ m IN}$	0V≤CANH≤5V 0V≤CANL≤5V	-2		2	%
CANH、CANL 对地 输入电容 ⁽¹⁾	C_{IN}	TXD=VIO			40	pF
CANH、CANL 差分 输入电容 ⁽¹⁾	C _{ID}	TXD=VIO			20	pF
显性段的差分 输入电阻 ⁽¹⁾	R _{ID(dom)}	图 11		40		Ω
主动隐性段的差分 输入电阻 ⁽¹⁾	R _{ID(active_rec)}	图 11		60		Ω
信号改善功能和 CAN FD	器件特性(CiA	A601-4:2019)				
SIC 时间		TXD 至 SIC 结束			530	ns
发送器隐性位宽	$\Delta t_{bit(BUS)}$	$\Delta t_{\text{bit(BUS)}} = t_{\text{bit(BUS)}} - t_{\text{bit(TXD)}}$	-10		10	ns
位脉冲宽度对称性	Δt_{rec}		-20		15	ns
接收器隐性位宽偏差	$\Delta t_{bit(RXD)}$	$\Delta t_{\text{bit(RXD)}} = t_{\text{bit(RXD)}} - t_{\text{bit(TXD)}}$	-30		20	ns
过温保护 (1)						
		过温保护	180	190	205	°C
过温关断	T _{j(sd)}	过温恢复	160	170	185	°C
		过温迟滞		20		°C

交流参数

如无另外说明,所有的典型值均在 T_{amb} =25°C、电源电压 VBAT=12V、VCC =5V、VIO=5V、 R_L =60 Ω 、 C_{BUS} =100pF、 C_{RXD} =15pF 的条件下测得。

参数	符号	测试条件	最小	典型	最大	单位
驱动器交流特性					•	•
传播延时(低到高)	$t_{d(TXD\text{-}busdom)}$	正常模式, 图 8,图 12			80	ns
传播延时(高到低)	$t_{d(TXD\text{-busrec})}$	正常模式, 图 8,图 12			80	ns
差分输出上升时间	$t_{r(\mathrm{BUS})}$			35		ns
差分输出下降时间	$t_{f(BUS)}$			35		ns
TXD 显性超时时间	t _{dom(TXD)}	TXD=0, 正常模式,图 7	0.8	2	4	ms
总线显性超时时间	$t_{\rm dom(BUS)}$	V _{OD} >0.9V; 正常或静音模式	0.8	2	4	ms
接收器交流特性						
从总线显性到 BUS 的传播延迟	td(busdom-RXD)	正常模式或静音模式, 图 8,图 12			110	ns
从总线隐性到 RXD 的传播延迟	td(busrec-RXD)	正常模式或静音模式, 图 8,图 12			110	ns
RXD 信号上升时间	$t_{r(RXD)} \\$	正常模式或静音模式		8		ns
RXD 信号下降时间	t _{f(RXD)}	正常模式或静音模式		8		ns
TXD 至 RXD 环路延迟						
环路延迟 1,TXD 下降沿至 RXD 下降沿	t _{loop1}	正常模式, 图 8,图 12	40		190	ns
环路延迟 2,TXD 上升沿至 RXD 上升沿	t _{loop2}	正常模式, 图 8,图 12	40		190	ns
CAN FD 位时间 ⁽²⁾						
		t _{bit(TXD)} =500ns,图 9	490		510	ns
BUS 输出位时间	tbit(BUS)	t _{bit(TXD)} =200ns,图 9	190		210	ns
		t _{bit(TXD)} =125ns,图 9	115		135	ns
		t _{bit(TXD)} =500ns,图 9	470		520	ns
RXD 输出位时间	$t_{bit(RXD)}$	t _{bit(TXD)} =200ns,图 9	170		220	ns
		t _{bit(TXD)} =125ns,图 9	95		145	ns
BUS 与 RXD 输出	Δt_{rec}	$\Delta t_{rec} = t_{bit(RXD)}$ - $t_{bit(BUS)}$,	-20		15	ns

参数	符号	测试条件	最小	典型	最大	单位
位时间差		t _{bit(TXD)} =500ns				
		$\Delta t_{rec} = t_{bit(RXD)} - t_{bit(BUS)},$ $t_{bit(TXD)} = 200ns$	-20		15	ns
		$\Delta t_{rec} = t_{bit(RXD)} - t_{bit(BUS)},$ $t_{bit(TXD)} = 125 ns$	-20		15	ns
器件开关特性						
远程唤醒显性时间	twake(dom)	休眠模式或待机模式	0.5		1.8	μs
远程唤醒隐性时间	twake(rec)	休眠模式或待机模式	0.5		1.8	μs
远程唤醒超时时间	$t_{wake(timeout)}$	休眠模式或待机模式	0.8		4	ms
模式转换时间	t _{t(moch)}				50	μs
启动时间	t_{startup}				1.5	ms
RXD 启动时间	t _{startup(RXD)}		4		20	μs
INH 启动时间	t _{startup} (INH)		4		50	μs
进入休眠保持时间	$t_{h(gotosleep)}$		24		50	μs
模式切换到 ERRN 的延迟时间 ⁽¹⁾	$t_{d(moch\text{-}ERRN)}$				20	μs
本地唤醒时间(1)	twake(local)	休眠模式或待机模式	5		50	μs
STBN 和 EN 端口 的滤波时间 ⁽¹⁾	tfilter_IO		1		10	μs
	t _{det(uv)} VBAT	VBAT 引脚 (1)			30	μs
	t _{det(uv)} VCC	VCC 引脚(1)			30	μs
欠压检测时间	t _{det(uv)} vcc	VIO 引脚 ⁽¹⁾			30	μs
	tdet(uvlong)VCC	VCC 引脚	100		150	ms
	t _{det(uvlong)} VIO	VIO 引脚	100		150	ms
万压标复叶语	t _{rec(uv)} VCC	VCC 引脚(1)			50	μs
欠压恢复时间	trec(uv)VIO	VIO 引脚 ⁽¹⁾			50	μs

⁽¹⁾ 设计保证,非生产测试数据。

^{(2) 8}Mbit/s 延时测试, VIO=2.8V~5.5V。

ESD 性能

参数	符号	测试条件	最小	典型	最大	单位
		CANH, CANL 引脚	-6		+6	kV
接触放电模型 (IEC) ⁽¹⁾	$ m V_{ESD_IEC}$	VBAT 引脚(带 10nF 电容); WAKE 引脚(带 33kΩ 电阻)	-8		+8	kV
人体放电模型 (HBM) ⁽²⁾	V_{ESD_HBM}	所有端口	-8		+8	kV
组件充电模型 (CDM) ⁽³⁾	V _{ESD_CDM}	所有端口	-1500		+1500	V

- (1) IEC 61000-4-2;
- (2) AEC-Q100-002;
- (3) AEC-Q100-011.

波形时序图

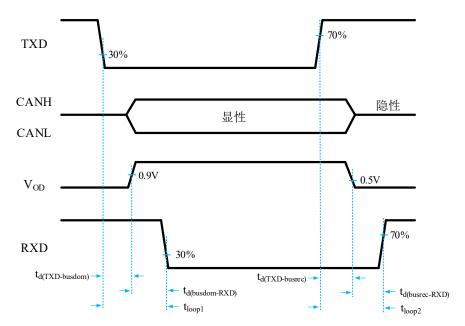


图 8 收发器传输延时示意图

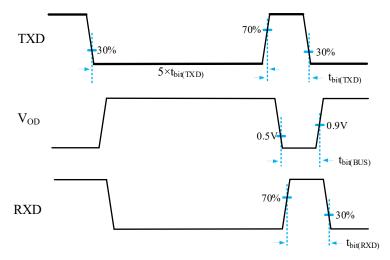


图 9 tbit 延时示意图

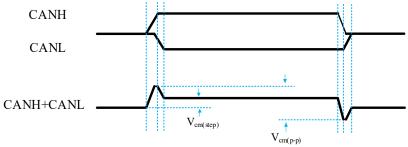


图 10 总线共模电压 (SAE 1939-14)

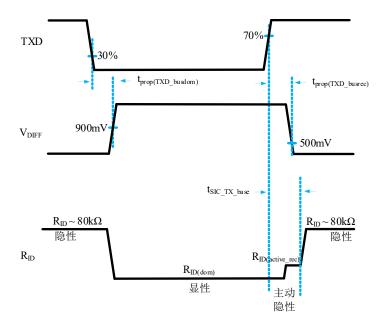


图 11 基于 TXD 的信号改善功能

收发器测试电路

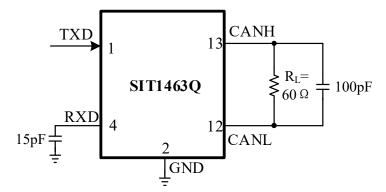


图 12 收发器时序测试电路图

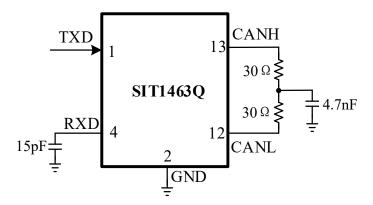


图 13 收发器总线对称性测试电路图

典型应用

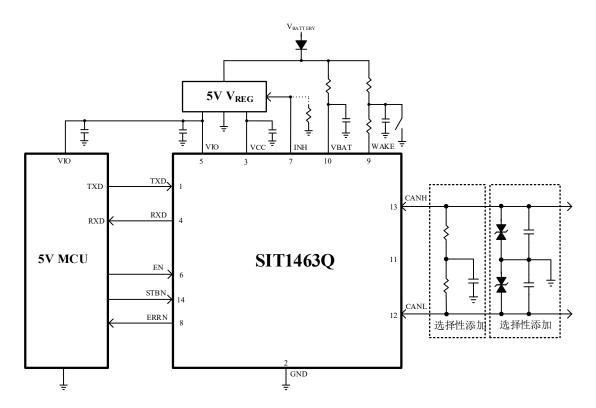
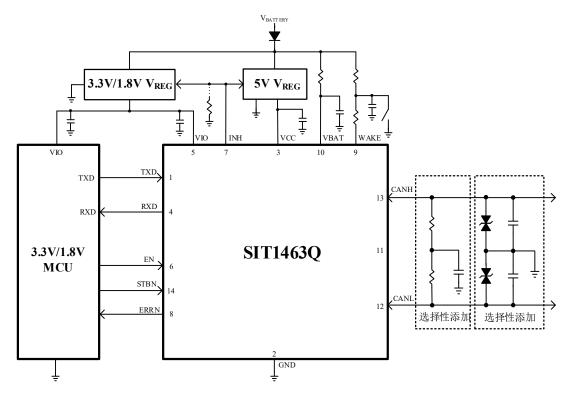
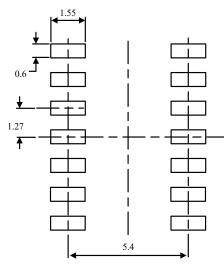
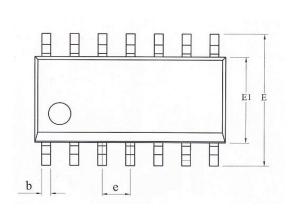
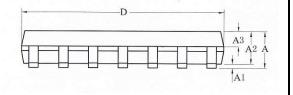


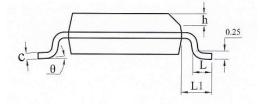
图 14 SIT1463Q 与 5V MCU 的典型应用图



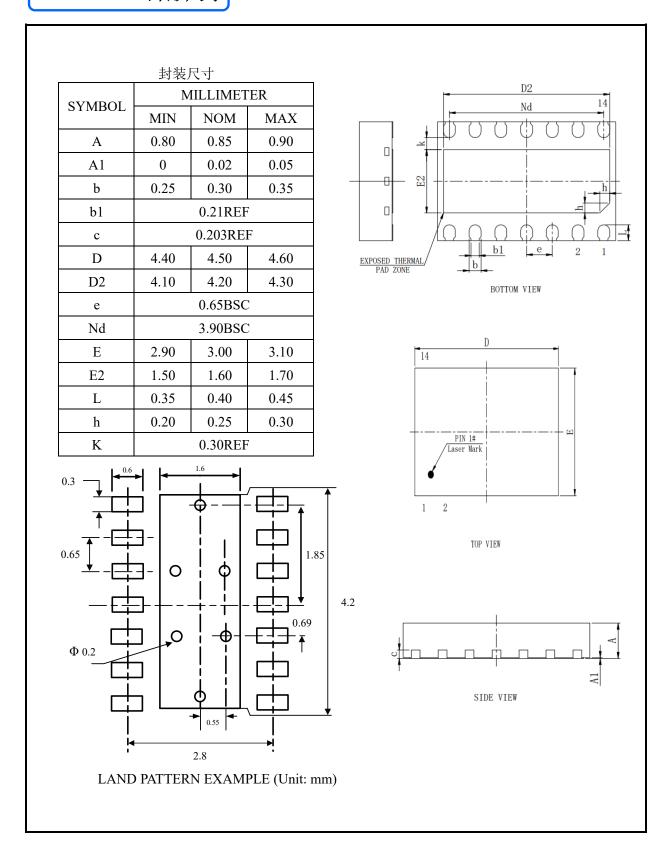

图 15 SIT1463Q 与 3.3V MCU 的典型应用图

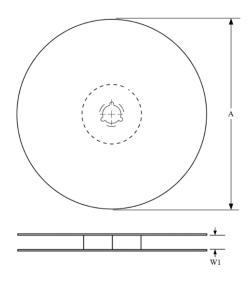

SOP14 外形尺寸


封装尺寸

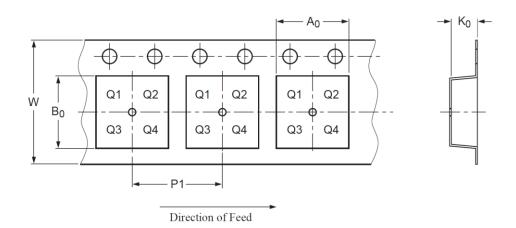

11夜八寸						
SYMBOL	M	MILLIMETER				
STMBOL	MIN	NOM	MAX			
A	1	-	1.75			
A1	0.05	-	0.225			
A2	1.30	1.40	1.50			
A3	0.60	0.65	0.70			
b	0.39	-	0.47			
bl	0.38	0.41	0.44			
С	0.20	-	0.24			
c1	0.19	0.20	0.21			
D	8.55	8.65	8.75			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
e		1.27BSC				
h	0.25	-	0.50			
L	0.50	-	0.80			
L1	1.05REF					
θ	0	-	8°			

LAND PATTERN EXAMPLE (Unit: mm)





DFN4.5×3-14 外形尺寸

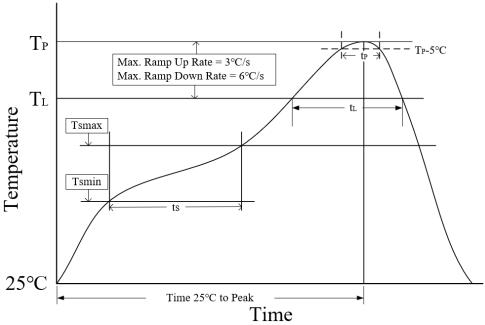


编带信息

A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

封装类型	卷盘直径	编带宽度	A0	В0	K0	P1	W
刊 表天空	A (mm)	W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)
SOP14	330±1	12.4	$6.50^{+0.20}_{-0.1}$	$9.30^{+0.20}_{-0.1}$	2.0±0.10	8.00±0.1	16.00±0.10
DFN4.5×3-14	329±1	12.4	3.75±0.1	4.25±0.1	1.00±0.1	8.00±0.1	12.00±0.3



定购信息

定购代码	封装	MSL	包装方式
SIT1463QT	SOP14	MSL3	盘装编带
SIT1463QTK	DFN4.5×3-14	MSL1	盘装编带

SOP14 编带式包装为 2500 颗/盘, DFN4.5×3-14 为 3000 颗/盘。

回流焊

参数	无铅焊接条件
平均温升速率(T _L to T _P)	3 °C/second max
预热时间 ts(T _{smin} =150 ℃ to T _{smax} =200 ℃)	60-120 seconds
融锡时间 t _L (T _L =217 ℃)	60-150 seconds
峰值温度 TP	260-265 ℃
小于峰值温度 5 ℃以内时间 t _P	30 seconds
平均降温速率(T _P to T _L)	6 °C/second max
常温 25℃ 到峰值温度 T _P 时间	8 minutes max

重要声明

芯力特有权在不事先通知的情况下,保留因技术革新而更改上述资料的权利。

修订历史

版本号	修订内容	修订时间
V1.0	初始版本	2024.06
V1.1	增加 AEC-Q100 Grade 1 认证; 增加 ESD 信息。	2024.12
V1.2	新增热阻信息; 修正图 3; 修正 DFN4.5*3-14 "LAND PATTERN EXAMPLE"示意图。	2025.07