3.0V~5.5V 供电, 高静电防护 14Mbps, 全双工 RS485/RS422 收发器

特点

- ➤ 3.0V~5.5V 电源供电,全双工;
- ▶ 1/8 单位负载,允许最多 256 个器件连接到总线;
- ▶ 驱动器短路输出保护;
- ▶ 具有较强的抗噪能力;
- ▶ 集成的瞬变电压抵制功能;
- ▶ 在电噪声环境中的数据传输速率可达到 14Mbps;
- ➤ A、B、Y、Z端口防护: HBM±15kV。

产品外形示意图

提供绿色环保无铅封装

描述

SIT3490E 是一款 3.0V~5.5V 供电、全双工、低功耗,完全满足 TIA/EIA-485 标准要求的 RS-485/RS-422 收发器。

SIT3490E 包括一个驱动器和一个接收器,两者均可独立传输信号。SIT3490E 具有 1/8 负载,允许 256 个 SIT3490E 收发器并接在同一通信总线上。可实现高达 14Mbps 的无差错数据传输。

SIT3490E工作电压范围为 3.0V~5.5V, 具备失效安全、限流保护、过压保护等功能。

SIT3490E 具有优秀的 ESD 释放能力, HBM 达到±15kV。

引脚分布图

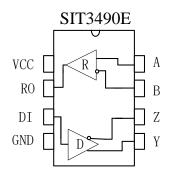


图 1 SIT3490E 引脚分布图

引脚定义

引脚序号	引脚名称	引脚功能
1	VCC	接电源。
2	RO	接收器输出端。 若 A-B≥+200mV, RO 输出为高电平; 若 A-B≤-200mV, RO 输出为低电平。
3	DI	DI 驱动器输入。DI 上的低电平使驱动器同相端 Y 输出为低电平,驱动器反相端 Z 输出为高电平; DI 上的高电平将使同相端 Y 输出为高电平,反相端 Z 输出为低。
4	GND	接地。
5	Y	驱动器同相输出端。
6	Z	驱动器反相输出端。
7	В	接收器反相输入端。
8	A	接收器同相输入端。

极限参数

参数	符号	大小	单位
电源电压	VCC	+7	V
控制端口电压	DI	-0.3~VCC+0.3	V
总线侧输入电压	A, B	-8~13	V
接收器输出电压	RO	-0.3~VCC+0.3	V
工作环境温度范围	T_{amb}	-40~125	${\mathbb C}$
存储温度范围	T_{stg}	-60~150	$^{\circ}$
焊接温度范围		300	$^{\circ}$
<u>ነ</u> ታ	SOP8	400	mW
连续功耗	DIP8	700	mW

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器 件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

驱动器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器差分输出 (无负载)	V_{OD1}	VCC=5V		5		V
驱动差分输出	V	82 , RL=54 Ω	1.5		VCC	V
业 沙定万制山	$ m V_{OD2}$	$\underline{\aleph}$ 2, RL=100 Ω	1.5		VCC	V
输出电压幅值的变化 (NOTE1)	$\Delta { m V}_{ m OD}$	<u>图 2</u> ,RL=54Ω			0.2	V
输出共模电压	V_{OC}	<u>\begin{align} 2 \equiv RL=54Ω </u>			3	V
共模输出电压幅值 的变化(NOTE1)	$\Delta V_{ m OC}$	<u>图 2</u> ,RL=54Ω			0.2	V
高电平输入	$V_{ m IH}$	DI	2.0			V
低电平输入	$V_{\rm IL}$	DI			0.8	V
逻辑输入电流	I_{IN1}	DI	-2		2	μΑ
输出短路时的电流, 短路到高	I_{OSD1}	短路到 0V~12V	35		250	mA
输出短路时的电流, 短路到低	I_{OSD2}	短路到-7V~0V	-250		-35	mA

(如无另外说明,VCC=3V~5V,-40°C≤T_{amb}≤125°C,典型值在 VCC=3.3V,T_{amb}=25°C)。 NOTE1:ΔV_{OD} 和ΔV_{OC} 分别是输入信号 DI 状态变化时引起的 V_{OD} 与 V_{OC} 幅值的变化。

接收器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
输入电流(A,B)	ī	VCC=0 或 3.3V V _{IN} =12V			125	μΑ
	$ m I_{IN2}$	VCC=0 或 3.3V V _{IN} =-7V	-100			μΑ
正向输入阈值电压	V_{IT^+}	-7V≤V _{CM} ≤12V			+200	mV
反向输入阈值电压	$V_{\text{IT-}}$	-7V≤V _{CM} ≤12V	-200			mV
输入迟滞电压	V_{hys}	-7V≤V _{CM} ≤12V	10	30		mV
高电平输出电压	$ m V_{OH}$	I _{OUT} =-4mA, V _{ID} =+200mV	VCC-1.5			V
低电平输出电压	V_{OL}	I _{OUT} =+4mA, V _{ID} =-200mV			0.4	V
三态输入漏电流	I _{OZR}	0.4V <v<sub>0<2.4V</v<sub>			±1	μΑ

参数	符号	测试条件	最小	典型	最大	单位
接收端输入电阻	$R_{\rm IN}$	-7V≤V _{CM} ≤12V	96			kΩ
接收器短路电流	I_{OSR}	0 V≤V _O ≤VCC	±7		±95	mA

(如无另外说明,VCC=3V~5V,-40°C≤T_{amb}≤125°C,典型值在 VCC=3.3V,T_{amb}=25°C)。

供电电流

参数	符号	测试条件	最小	典型	最大	单位
供电电流	I_{CC}	DI=0 或 VCC		240	400	μΑ

ESD 保护

参数	符号	测试条件	最小	典型	最大	单位
A, B, Y, Z		人体模型(HBM)		±15		kV
其它端口		人体模型(HBM)		±6		kV

驱动器开关特性

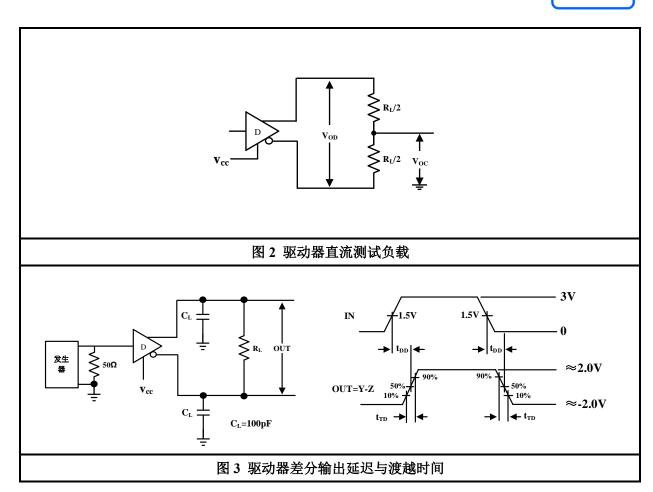
参数	符号	测试条件	最小	典型	最大	单位
驱动器输入到输出 传播延迟(低到高)	t _{PLH}			15	35	ns
驱动器输入到输出 传播延迟(高到低)	t _{PHL}	R_L =54 Ω , C_L =100pF		15	35	ns
tdplh- tdphl	t _{SKEW1}	见 <u>图 3</u> 与 <u>图 4</u>		7	10	ns
差分输出延时时间 /差分输出转换时间	$t_{\mathrm{DD}},t_{\mathrm{TD}}$			10	25	ns

接收器开关特性

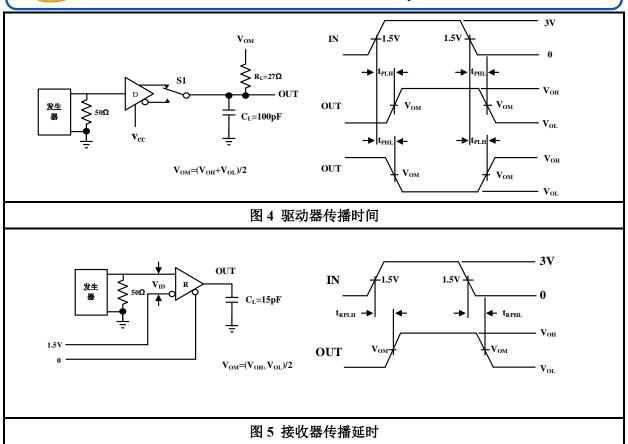
参数	符号	测试条件	最小	典型	最大	单位
接收器输入到输出 传播延迟从低到高	$t_{ m RPLH}$	见图 5	20	60	90	ns
接收器输入到输出 传播延迟从高到低	$t_{ m RPHL}$	V _{ID} ≥2.0V; 上升与下降沿	20	60	90	ns
t _{RPLH} - t _{RPHL}	t _{SKEW2}	时间 V _{ID} ≤15ns		7	10	ns

功能表

发送功能表


输入	输出		
DI	Y	Z	
1	Н	L	
0	L	Н	
-	-	1	
-	-	-	

接收功能表


输入	输出
A-B	RO
≥+200mV	Н
≤-200mV	L
开/短路	Н
≤+200mV 且 >-200mV	?

(1) H=高电平; L=低电平; ?=不确定。

测试电路

3.0V~5.5V 供电,高静电防护 14Mbps,全双工 RS485/RS422 收发器

说明

1 简述

SIT3490E 是用于 RS-485/RS-422 通信的全双工高速收发器,包含一个驱动器和接收器。具有失效安全,过压保护,过流保护等功能。SIT3490E 实现高达 14Mbps 的无差错数据传输。

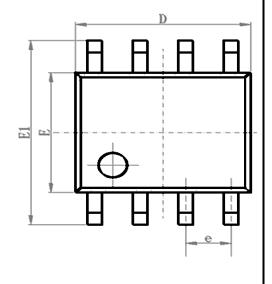
2 总线上挂接 256 个收发器

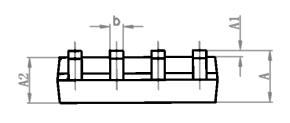
标准 RS485 接收器的输入阻抗为 12kΩ(1个单位负载),标准驱动器可最多驱动 32个单位负载。SIT3490E 收发器的接收器具有 1/8 单位负载输入阻抗(96kΩ),允许最多 256 个收发器并行挂接在同一通信总线上。这些器件可任意组合,或者与其它 RS485 收发器进行组合,只要总负载不超过 32个单位负载,都可以挂接在同一总线上。

3 驱动器输出保护

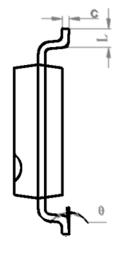
通过过流、过压保护机制避免故障或总线冲突引起输出电流过大和功耗过高,在整个共模电压 范围(参考典型工作特性)内提供快速短路保护。

e L


c θ SOP8 外形尺寸


符号	最小值/mm	典型值/mm	最大值/mm			
A	1.40	-	1.80			
A1	0.10	-	0.25			
A2	1.30	1.40	1.50			
ь	0.38	-	0.51			
D	4.80	4.90	5.00			
Е	3.80	3.90	4.00			
E1	5.80	6.00	6.20			
e		1.27BSC				

0.40

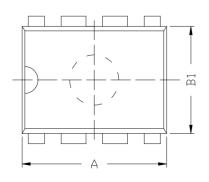

0.20

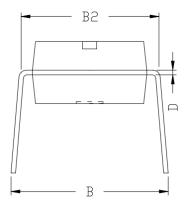
0°

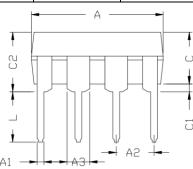
0.60

0.80

0.25

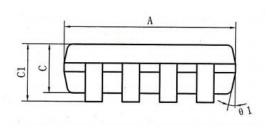

8°

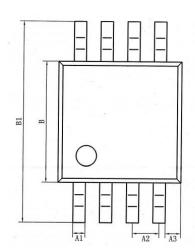


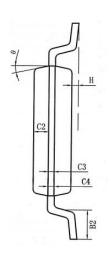

DIP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm	
A	9.00	9.20	9.40	
A1	0.33	0.33 0.45 0.51		
A2		2.54TYP		
A3	1.525TYP			
В	8.40	8.70	9.10	
B1	6.20	6.40	6.60	
B2	7.32	7.32 7.62		
С	3.20	3.20 3.40		
C1	0.50	0.60 0.80		
C2	3.71	4.00 4.31		
D	0.20	0.28 0.36		
L	3.00	3.30	3.60	

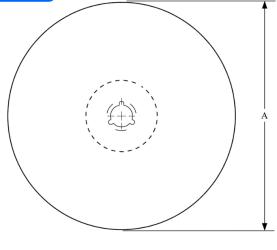


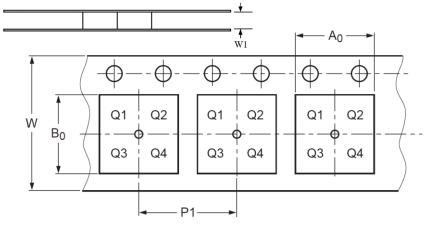



MSOP8/8µMAX/VSSOP8 外形尺寸

4-1	装	\Box	_1
#2	· 그는	$^{\kappa}$	$\mathbf{\tau}$

符号	最小值/mm	典型值/mm	最大值/mm	
A	2.90	3.0	3.10	
A1	0.28		0.35	
A2		0.65TYP		
A3		0.375TYP		
В	2.90	3.0	3.10	
B1	4.70		5.10	
B2	0.45		0.75	
С	0.75		0.95	
C1			1.10	
C2	0.328 TYP			
СЗ		0.152		
C4	0.15	0.23		
Н	0.00		0.09	
θ	12°TYP			



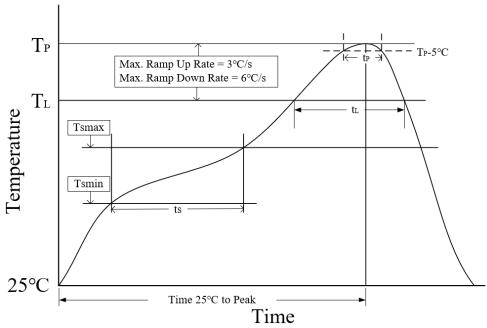


A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
В	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Direction of Feed

封装类型	卷盘直径 A (mm)	编带宽度 W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330	12.5±0.20	6.50±0.1	5.30±0.10	2.05±0.1	8.00±0.1	12.00±0.1
MSOP8	330	12.5±0.20	5.33±0.10	3.40±0.10	1.53±0.10	8.00±0.10	$12.00^{+0.30}_{-0.10}$


定购信息

定购代码	封装	包装方式
SIT3490EESA	SOP8	编带包装
SIT3490EEPA	DIP8	管状包装
SIT3490EEUA	MSOP8/VSSOP8/8μMAX	编带包装

编带式包装为2500颗/盘,管状包装为50颗/管。

回流焊

参数	无铅焊接条件
平均温升速率(T _L to T _P)	3 °C/second max
预热时间 ts(T _{smin} =150 °C to T _{smax} =200 °C)	60-120 seconds
融锡时间 t _L (T _L =217 ℃)	60-150 seconds
峰值温度 TP	260-265 °C
小于峰值温度 5 ℃以内时间 t _P	30 seconds
平均降温速率(T _P to T _L)	6 °C/second max
常温 25℃ 到峰值温度 TP 时间	8 minutes max

重要声明

芯力特有权在不事先通知的情况下,保留更改上述资料的权利。

修订历史

版本号	修订内容	修订时间
V1.2	初始版本。	2020.02
V1.3	更改工作温度范围。	2020.03
V1.4	更改正向输入阈值电压最大值; 更改失效安全最小噪声容忍描述; 增加 MSOP8/8μMAX/VSSOP8 封装信息。	2020.05
V1.5	更改 VCC 电压范围; 更改 RO 高的条件; 更改正向输入阈值电压最大值; 删除有关失效安全的描述。	2020.07
V1.6	更新发送功能表。	2020.08
V1.7	更新正向输入阈值电压最大值。	2020.09
V1.8	更新 SOP8 封装尺寸。	2022.01
V1.9	更新订购信息; 增加回流焊信息。	2022.11
V1.10	增加 V_{OD1} 的测试条件; 更新 V_{OD2} 在 $RL=100\Omega$ 测试条件下的最小值; 更新测试电路; 增加编带信息。	2023.02
V1.11	更新工作温度描述及表示符号; 更新电性能表中,图 2 对应的 RL 值; 更新电性能测试说明; 更新 t _{DD} , t _{TD} 描述; 更新功能表。	2023.04
V1.12	更新 A, B, Y, Z 端口 ESD 防护能力 HBM 为±15kV.	2023.06