

特点

产品外形示意图

- ▶ 5V 电源供电,全双工;
- ▶ 1/8 单位负载,允许最多 256 个器件连接到总线;
- ▶ 驱动器短路输出保护;
- ▶ 接收器开路失效保护;
- ▶ 具有较强的抗噪能力;
- ▶ 集成的瞬变电压抵制功能;
- ▶ 在电噪声环境中的数据传输速率可达到 1Mbps;
- ➤ A、B 端口防护: HBM±16kV;

提供绿色环保无铅封装

描述

SIT488E 是一款 5V 供电、全双工、低功耗,完全满足 TIA/EIA-485 标准要求的 RS-485 收发器。 SIT488E 包括一个驱动器和一个接收器,两者均可独立传输信号。SIT488E 具有 1/8 负载,允许 256 个 SIT488E 收发器并接在同一通信总线上。可实现高达 1Mbps 的无差错数据传输。

SIT488E 工作电压范围为 4.5~5.5 V,具备失效安全(fail-safe)、限流保护、过压保护等功能。 SIT488E 具有优秀的 ESD 释放能力,HBM 达到±16kV。

引脚分布图

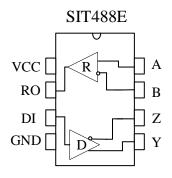


图 1 SIT488E 引脚分布图

引脚定义

引脚序号	引脚名称	引脚功能
1	VCC	接电源: 4.5V <u>< VCC <u>< 5.5V</u></u>
2	RO	接收器输出端。 若 A-B≥-50mV, RO 输出为高电平; 若 A-B≤-200mV, RO 输出为低电平。
3	DI	DI 驱动器输入。 DI 上的低电平使驱动器同相端 Y 输出为低电平, 驱动器反相端 Z 输出为高电平; DI 上的高电平将使同相端 Y 输出为高电平, 反相端 Z 输出为低。
4	GND	接地
5	Y	驱动器同相输出端
6	Z	驱动器反相输出端
7	В	接收器反相输入端
8	A	接收器同相输入端

极限参数

参数	符号	大小	单位
电源电压	VCC	+7	V
控制端口电压	DI	-0.3~VCC+0.3	V
总线侧输入电压	A, B	-8~13	V
接收器输出电压	RO	-0.3~VCC+0.3	V
工作温度范围	T_{A}	-40~125	°C
存储工作温度范围	T_{stg}	-60~150	°C
焊接温度范围		300	°C
连续功耗	SOP8	400	mW
建 实切代	DIP8	700	mW

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

驱动器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器差分输出 (无负载)	$ m V_{OD1}$			5		V
驱动差分输出	V	$ \underline{8} \ \underline{2}, RL = 27 \Omega $	1.5		VCC	V
业 少是万制百	$ m V_{OD2}$	$\underline{\aleph}$ 2, RL = 50 Ω	2		VCC	V
输出电压幅值的变化 (NOTE1)	$\Delta { m V}_{ m OD}$	$ \underline{\aleph} $ 2, RL = 27 Ω			0.2	V
输出共模电压	V_{OC}	$ \underline{\aleph} $ 2, RL = 27 Ω			3	V
共模输出电压幅值 的变化(NOTE1)	$\Delta { m V}_{ m OC}$	$ \underline{\aleph} $ 2, RL = 27 Ω			0.2	V
高电平输入	$ m V_{IH}$	DI	2.0			V
低电平输入	$V_{\rm IL}$	DI			0.8	V
逻辑输入电流	$I_{\rm IN1}$	DI	-2		2	μΑ
输出短路时的电流, 短路到高	I_{OSD1}	短路到 0V~12V	35		250	mA
输出短路时的电流, 短路到低	I_{OSD2}	短路到-7V~0V	-250		-35	mA

(如无另外说明,VCC=5V±10%, T_A =-40°C~125°C,典型值在 VCC=+5V, T_A =25°C)NOTE1: ΔV_{OD} 和 ΔV_{OC} 分别是输入信号 DI 状态变化时引起的 V_{OD} 与 V_{OC} 幅值的变化。

接收器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
松】山冰(4)内)	Ţ	VCC=0 或 5V V _{IN} = 12 V			125	μΑ
输入电流(A,B)	I_{IN2}	VCC=0 或 5V V _{IN} = -7 V	-100			μΑ
正向输入阈值电压	V_{IT^+}	-7V≤V _{CM} ≤12V			-50	mV
反向输入阈值电压	$V_{\text{IT-}}$	-7V≤V _{CM} ≤12V	-200			mV
输入迟滞电压	V_{hys}	$-7V \le V_{CM} \le 12V$	10	30		mV
高电平输出电压	$ m V_{OH}$	$I_{OUT} = -4mA$, $V_{ID} = +200 \text{ mV}$	VCC-1.5			V
低电平输出电压	V_{OL}	$I_{OUT} = +4mA$, $V_{ID} = -200 \text{ mV}$			0.4	V

5V 高静电防护, 1Mbps 全双工 RS485/RS422 收发器

参数	符号	测试条件	最小	典型	最大	单位
三态输入漏电流	I_{OZR}	$0.4 \text{ V} < \text{V}_{\text{O}} < 2.4 \text{ V}$			±1	μΑ
接收端输入电阻	R_{IN}	$-7V \le V_{CM} \le 12V$	96			kΩ
接收器短路电流	I_{OSR}	$0 \text{ V} \leq \text{V}_{\text{O}} \leq \text{VCC}$	±7		±95	mA

(如无另外说明, VCC=5V±10%, T_A=-40℃~125℃, 典型值在 VCC=+5V, T_A=25℃)

供电电流

参数	符号	测试条件	最小	典型	最大	单位
供电电流	I_{CC}	DI=0 或 VCC		250	400	μΑ

ESD 保护

参数	符号	测试条件	最小	典型	最大	单位
A, B, Y, Z		人 体 模 型 (HBM)		±16		kV
其它端口		人 体 模 型 (HBM)		±6		kV

驱动器开关特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器输入到输出 传播延迟(低到高)	t _{DPLH}			100	150	ns
驱动器输入到输出 传播延迟(高到低)	t_{DPHL}	$R_{DIFF} = 54 \Omega,$ $C_{L1}=C_{L2}=100 pF$		100	150	ns
t _{DPLH} - t _{DPHL}	t_{SKEW1}	(见图3与图4)			10	ns
上升沿时间 /下降沿时间	$t_{\mathrm{DR}},t_{\mathrm{DF}}$			190	250	ns

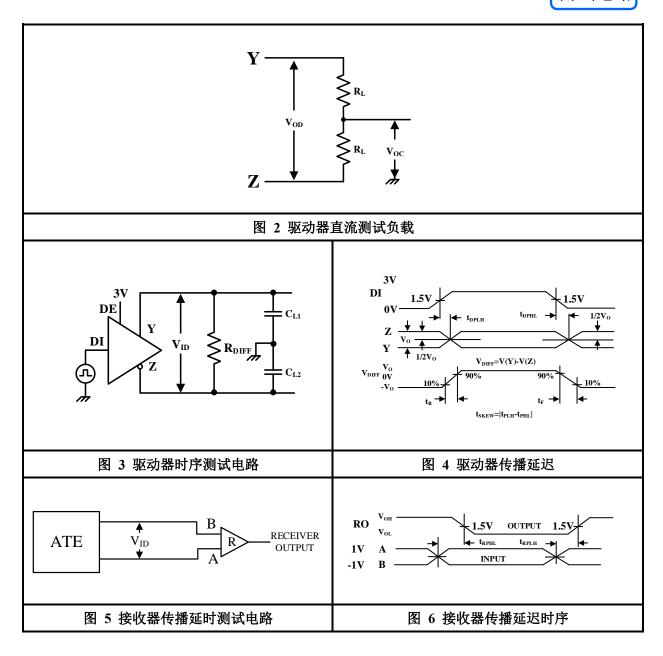
接收器开关特性

参数	符号	测试条件	最小	典型	最大	单位
接收器 输入到输出传播 延迟从低到高	t _{RPLH}	见 <u>图 5</u> 与 <u>图 6</u>	20	50	80	ns
接收器 输入到输出传播 延迟从高到低	t_{RPHL}	V _{ID} ≥2.0V; 上升与下降沿 时间 V _{ID} ≤15ns	20	50	80	ns
t _{RPLH} - t _{RPHL}	t _{SKEW2}			5	15	ns

功能表

发送功能表

输入	输	出
DI	Y	z
1	Н	L
0	L	Н
X	Z	Z
X	Z(shut	tdown)


接收功能表

输入	输出
A-B	RO
≥-50mV	Н
≤-200mV	L
开/短路	Н
X	Z

注: X: 任意电平; Z: 高阻。

测试电路

说明

1 简述

SIT488E 是用于 RS-485/RS-422 通信的全双工高速收发器,包含一个驱动器和接收器。具有失效安全,过压保护、过流保护。SIT488E 实现高达 1Mbps 的无差错数据传输。

2 失效安全

接收器输入短路或开路,或挂接在终端匹配传输线上的所有驱动器均处于禁用状态时(idle),SIT488E 可确保接收器输出逻辑高电平。这是通过将接收器输入门限分别设置为-50mV 和-200mV 实现的。若差分接收器输入电压(A-B)≥-50mV,RO 为逻辑高电平;若电压(A-B)≤-200mV,RO 为逻辑低电平。依据接收器门限,可实现具有 50mV 最小噪声容限的逻辑高电平。-50mV 至-200mV 门限电压是符合±200mV 的 EIA/TIA-485 标准的。

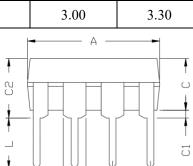
3 总线上挂接 256 个收发器

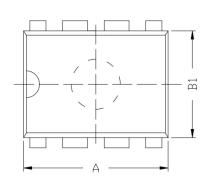
标准 RS485 接收器的输入阻抗为 $12k\Omega$ (1 个单位负载),标准驱动器可最多驱动 32 个单位负载。SIT488E 收发器的接收器具有 1/8 单位负载输入阻抗($96k\Omega$),允许最多 256 个收发器并行挂接在同一通信总线上。这些器件可任意组合,或者与其它 RS485 收发器进行组合,只要总负载不超过 32 个单位负载,都可以挂接在同一总线上。

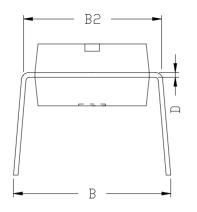
4 驱动器输出保护

通过过流、过压保护机制避免故障或总线冲突引起输出电流过大和功耗过高,在整个共模电压 范围(参考典型工作特性)内提供快速短路保护。

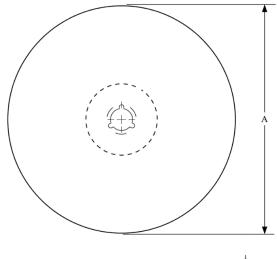
SOP8 外形尺寸

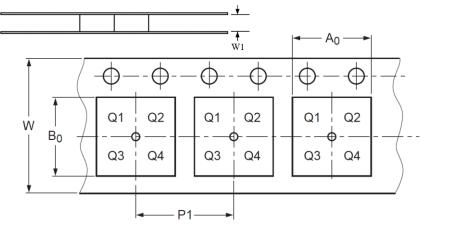

	封装尺		
符号	最小值/mm	典型值/mm	最大值/mm
A	1.40	-	1.80
A1	0.10	-	0.25
A2	1.30	1.40	1.50
b	0.38	-	0.51
D	4.80	4.90	5.00
Е	3.80	3.90	4.00
E1	5.80	6.00	6.20
e		1.27BSC	
L	0.40	0.60	0.80
c	0.20	-	0.25
θ	0°	-	8°
A2			A A1


DIP8 外形尺寸


封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm	
A	9.00	9.20	9.40	
A1	0.33	0.45	0.51	
A2	2.54TYP			
A3	1.525TYP			
В	8.40	8.70	9.10	
B1	6.20	6.40	6.60	
B2	7.32	7.62	7.92	
С	3.20	3.40	3.60	
C1	0.50	0.60	0.80	
C2	3.71	4.00	4.31	
D	0.20	0.28	0.36	
L	3.00	3.30	3.60	


- A2 -



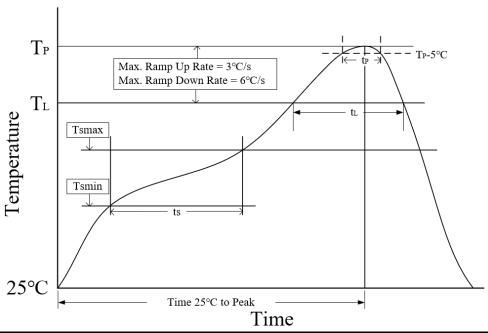
编带信息

A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
Вυ	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Direction of Feed

PIN1 is in quadrant 1

封装类型	卷盘直径	编带宽度	A0	В0	K0	P1	W	
	A (mm)	W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
SO)P8	330	12.5±0.20	6.50±0.1	5.30±0.10	2.05±0.1	8.00±0.1	12.00±0.1


定购信息

定购代码	封装	包装方式
SIT488EESA	SOP8	盘装编带
SIT488EEPA	DIP8	管状包装

SOP 编带式包装为 2500 颗/盘。DIP8 管状包装为 50 颗/管。

回流焊

参数	无铅焊接条件
平均温升速率(T _L to T _P)	3 °C/second max
预热时间 ts(T _{smin} =150 °C to T _{smax} =200 °C)	60-120 seconds
融锡时间 t _L (T _L =217 ℃)	60-150 seconds
峰值温度 TP	260-265 °C
小于峰值温度 5 ℃以内时间 t _P	30 seconds
平均降温速率(T _P to T _L)	6 °C/second max
常温 25℃ 到峰值温度 TP 时间	8 minutes max

重要声明

芯力特有权在不事先通知的情况下,保留更改上述资料的权利。

修订历史

版本号	修订内容	修订时间
V1.0~V1.2	产品数据手册。	2021.01
V1.3	更新 SOP8 封装尺寸; 增加重要声明。	2022.01
V1.4	更新工作温度范围; 增加编带信息; 更新订购信息; 增加回流焊信息; 增加修订历史; 调整格式	2023.09