

特点

产品外形示意图

- ➤ 宽输入电压范围: 3V 到 40V
- ▶ 超低静态电流<5.5μA
- ➤ 低压差: 200mV @ 100mA
- ▶ 高达 300mA 或 150mA 的输出电流,极低功耗的休眠模式
- ▶ ±2%, 2.5V, 3.3V, 5V 和 15V 固定输出版本; 以及 0.65V 至 24V 宽输出电压可调版本
- > 关断电流<1μA
- ➤ 高 PSRR 60dB @ 100Hz
- ▶ 稳定的环路, 仅需 2.2μF 低 ESR 输出陶瓷电容
- ▶ 耐压 40V 的使能 (EN) 管脚
- ▶ 过流保护,短路保护
- ► -40°C~150°C工作结温
- 过温关断与自动重启恢复
- ▶ 内置软启动
- ▶ 专门为 MCU 应用设计的,带可编程延迟 PG 标识
- ➤ 支持 ESOP8, MSOP-EP8, SOT89-5 等多种封装形式

图 1 提供绿色环保无铅封装

描述

SIT14503 系列是超低静态电流,低压差线性稳压器(LDO),具有 3V 至 40V 的宽输入电压范围。该产品系列提供 2.5V,3.3V,5V 和 15V 的固定输出,或者 0.65V 至 VIN - VDR 的可调输出,能提供高达 150mA,300mA 的负载电流。SIT14503 系列的静态电流在关断时小于 1μA,在空载条件下,静态电流小于 5.5μA。SIT14503 系列提供可编程延迟的 PG 管脚选项,可以用来直接驱动微处理器(MCU)的复位管脚,用户可以根据 MCU 的需求选择固定的 5V 或 3.3V 输出。可应用于汽车电子、工控系统、宽电压电池供电系统的电源管理。

引脚分布图

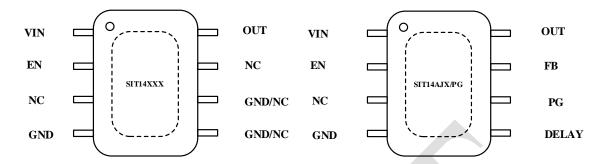


图 2 SIT14503 固定输出系列引脚分布图

图 3 SIT14503/P 可调输出系列引脚分布图

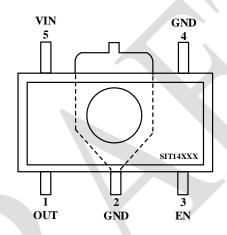


图 4 SIT1450X、SIT1433X 固定输出系列 SOT89-5 封装引脚分布图

引脚定义

表 1 SIT1450X、SIT1433X 固定输出系列引脚定义

引脚序号	引脚名称	引脚功能描述
1	VIN	输入管脚,在 VIN 和 GND 之间放置一个至少 1μF 的陶瓷电容。
2	EN	使能管脚,连接到逻辑控制管脚或者直接连接到 IN。
3	NC	无连接。
4	GND	地。
5	GND/NC	地或不连接。
6	GND/NC	地或不连接。
7	NC	无连接。
8	OUT	输出管脚,在 OUT 和 GND 之间放置一个至少 2.2μF 的电容。

表 2 SIT14AJX/P 引脚定义

引脚序号	引脚名称	引脚功能描述
1	VIN	输入管脚,在 VIN 和 GND 之间放置一个至少 1μF 的陶瓷电容。
2	EN	使能管脚,连接到逻辑控制管脚或者直接连接到VIN。
3	NC	无连接。
4	GND	地。
5	DELAY	PG 延迟管脚,对 GND 连接一个陶瓷电容以设置 PG 延迟时间。
6	PG	PG 管脚。没有 PG 功能时,该引脚悬空或接地。
7	FB	反馈管脚,连接到 OUT 和 GND 之间的电阻分压器的中间。 对于固定输出版本,此管脚 NC,建议连接到 GND。
8	OUT	输出管脚,在 OUT 和 GND 之间放置一个至少 2.2μF 的电容。

表 3 SIT1450X、SIT1433X 固定输出系列 SOT89-5 封装引脚定义

引脚序号	引脚名称	引脚功能描述		
1	OUT	输出管脚,在 OUT 和 GND 之间放置一个至少 2.2μF 的电容。		
2	GND	地。		
3	EN	使能管脚,连接到逻辑控制管脚或者直接连接到VIN。		
4	GND	地。		
5	VIN	输入管脚,在 VIN 和 GND 之间放置一个至少 1μF 的陶瓷电容。		

注:背面焊盘推荐接地。

系列产品

序号	型号	输出电压	最大负载电流	PG	静态电流
1	SIT14251	2.5V	150mA	×	5.5μΑ
2	SIT14253	2.5V	300mA	×	5.5μΑ
3	SIT14331	3.3V	150mA	×	5.5μΑ
4	SIT14333	3.3V	300mA	X	5.5μΑ
5	SIT14501	5.0V	150mA	×	5.5μΑ
6	SIT14503	5.0V	300mA	X	5.5μΑ
7	SIT14F01	15V	150mA	×	5.5μΑ
8	SIT14F03	15V	300mA	×	5.5μΑ
9	SIT14AJ1	可调	150mA	×	5.5μΑ

序号	型号	输出电压	最大负载电流	PG	静态电流
10	SIT14AJ3	可调	300mA	×	5.5μΑ
11	SIT14251/P	2.5V	150mA	√	7.5μΑ
12	SIT14253/P	2.5V	300mA	√	7.5μΑ
13	SIT14331/P	3.3V	150mA	√	7.5μΑ
14	SIT14333/P	3.3V	300mA	√	7.5μΑ
15	SIT14501/P	5.0V	150mA	1	7.5μΑ
16	SIT14503/P	5.0V	300mA	1	7.5μΑ
17	SIT14F01/P	15V	150mA	1	7.5μΑ
18	SIT14F03/P	15V	300mA	1	7.5μΑ
19	SIT14AJ1/P	可调	150mA	1	7.5μΑ
20	SIT14AJ3/P	可调	300mA	1	7.5µA

功能框图

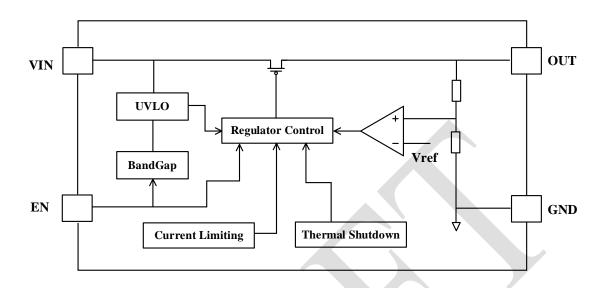


图 7 SIT1450X、SIT1433X 固定输出系列内部框图

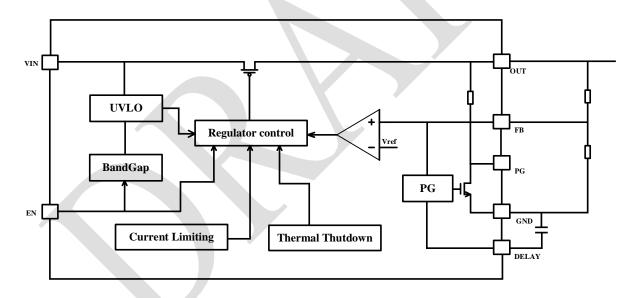


图 8 SIT14AJX/P 可调输出系列内部框图

使用说明

1 概述

SIT14503 系列是超低静态电流,低压差线性稳压器(LDO),具 3V 至 40V 的宽输入电压范围。它的静态电流在关断时小于 $1\mu A$,在空载条件下,静态工作电流为 $5.5\mu A$ 。

该产品系列提供固定 2.5V, 3.3V, 5V, 15V 输出, 或者 0.65V 至 VIN - VDR 可调输出的版本。可调输出电压版本采用外部电阻反馈, 典型的 FB 脚反馈电压为 0.65V。SIT14XX1 能提供 150mA 的负载电流, SIT14XX3 能提供高达 300mA 的负载电流。

SIT14503 系列提供可编程延迟的 PG 管脚选项,可以用来直接驱动微处理器(MCU)的复位管脚。当 OUT 达到 PG 阈值 $V_{(PG-RISE)}$,Delay 脚开始往外输出电流 $I_{(Charge)}$,当 Delay 脚电压达到 $V_{(RISE)}$,PG 被允许上拉。用户可以根据 MCU 的延时需求选择合适的 Delay 电容。

SIT14503 系列具有内置的过流保护,短路保护,过温关机和自动重启的保护功能。

极限参数

参数	符号	最低	最高	单位
输入电压	VIN	-0.3	42	V
使能电压	EN	-0.3	VIN	V
反馈电压	FB	-0.3	5.5	V
电源准备标识信号	PG	-0.3	VIN	V
输出电压	OUT	-0.3	VIN	V
延迟引脚	DELAY	-0.3	6	V
工作环境温度	T_{amb}	-40	125	°C
工作结温	T_{j}	-40	150	°C
存储温度	T_{stg}	-55	150	°C

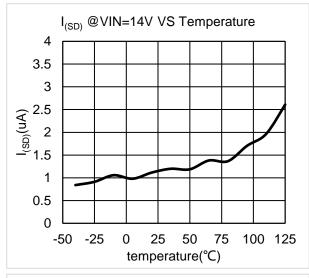
注:最大极限参数值指超过该值时可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件 正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有电压的参考点为地。

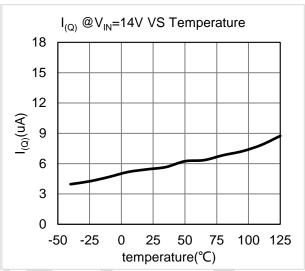
直流特性

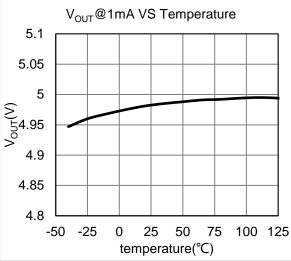
若无特别声明,以下参数的最大、最小值覆盖推荐的工作温度为- 40° C \leq T $_{amb}\leq$ 125 $^{\circ}$ C。典型 VIN=14V,输出电容为 10μ F 的陶瓷电容, $T_{amb}=$ 25 $^{\circ}$ C。

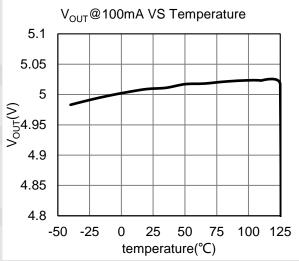
符号	参数	测试条件	最小	典型	最大	单位
供电电压和电流				•	•	
$V_{ m IN}$	输入电压		3		40	V
$I_{(SD)}$	关机功耗	EN=0, VIN=14V		_1	3	μA
	空载功耗	EN=5, VIN=14V IOUT=0A		5.5	15	μΑ
$I_{(Q)}$	带 PG 功能时空 载功耗	EN=5, VIN=14V IOUT=0A		7.5	17	μА
使能输入(EN)						•
V_{IL}	逻辑输入低电平				0.7	V
$ m V_{IH}$	逻辑输入高电平		2			V
I_{EN}	EN 输入电流	EN=5V		0.1	0.5	μА
可调输出						
$ m V_{FB}$	反馈电压,可调 输出版本	$VIN = OUT + V_{(Dropout)} \text{ to } 40 \text{ V},$ $I_{OUT} = 1\text{mA to } I_{MAX}$	0.637	0.65	0.663	V
I_{FB}	FB 漏电流		-0.1	0	0.1	μΑ
$V_{ m OUT}$	输出电压,稳定 输出版本	$VIN = OUT + \\ V_{(Dropout)} \text{ to } 40 \text{ V}, \\ I_{OUT} = 1\text{mA to } I_{MAX}$	-2		2	%
V _(Line-Reg)	线性调整率	$VIN = 6 V \text{ to } 40 V,$ $I_{OUT} = 10 \text{ mA}$			20	mV
V _(Load-Reg)	负载调整率	$VIN = 14 V$, $I_{OUT} = 1 \text{ mA to } I_{MAX}$			40	mV
压差电压						
$V_{(Dropout)100mA}$	输出压差电压	OUT=5V, I _{OUT=} 100mA		210	390	mV
$V_{(Dropout)200mA}$	输出压差电压	OUT=5V, I _{OUT} =200mA		420	780	mV
V _{(Dropout)300mA}	输出压差电压	OUT=5V, I _{OUT=} 300mA		630	1170	mV
V _{(Dropout)100mA-3.3V}	输出压差电压	OUT=3.3V, I _{OUT} =100mA				mV
V _{(Dropout)200mA-3.3V}	输出压差电压	OUT=3.3V, I _{OUT} =200mA				mV

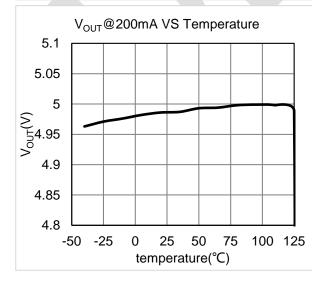
符号	参数	测试条件	最小	典型	最大	单位
V _(Dropout) 300mA-3.3V	输出压差电压	OUT=3.3V, I _{OUT} =300mA				mV
过流保护						
I _{(CL)-150mA}	输出过流限制					mA
I _{(CL)-300mA}	输出过流限制			510		mA
PSRR						
PSRR	电源抑制比	I _{OUT} =10 mA, 频率=100 Hz, C _{OUT} =2.2 μF		60 (1)		dB
热关断						
T _(SD)	过温保护			175 (1)		°C
T _(HYST)	过温保护迟滞窗 口			20 (1)		°C
电源准备标识信	号					
V _(PG-RISE)	PG 上升阈值			94		%
V _(PG-FALL)	PG 下降阈值			92		%
R _(PG)	PG内部上拉电阻			30		kΩ
I _(CHARGE)	延迟电容充电电 流			1.3		μΑ
V _(RISE)	Delay 电压上升 阈值		1.17	1.21	1.25	V

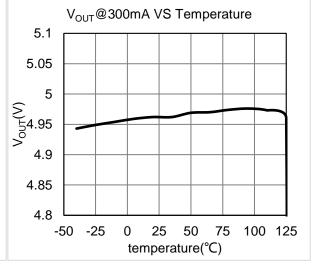

注 (1): 设计保证,非生产测试数据。

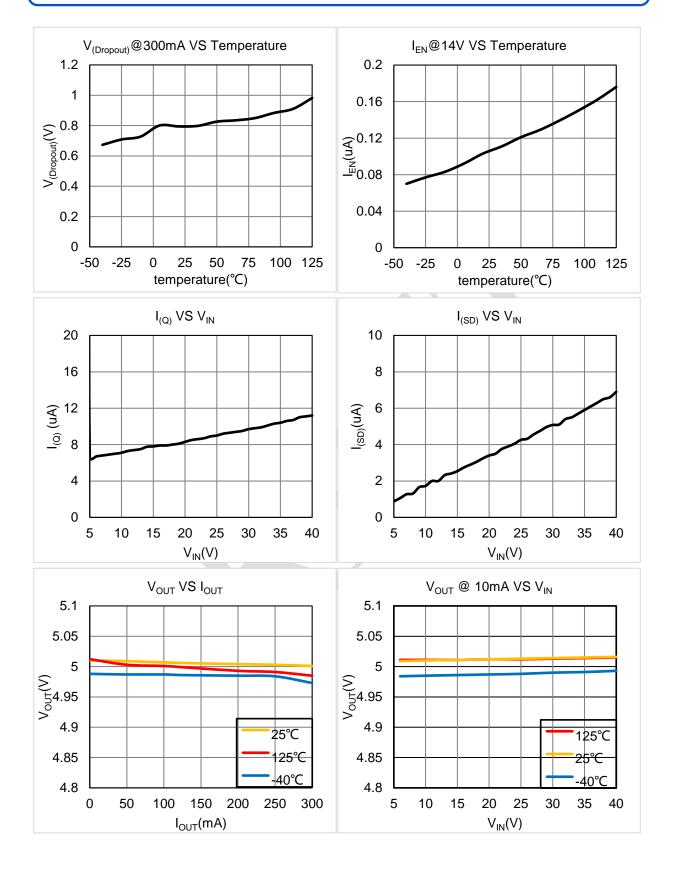

ESD 性能

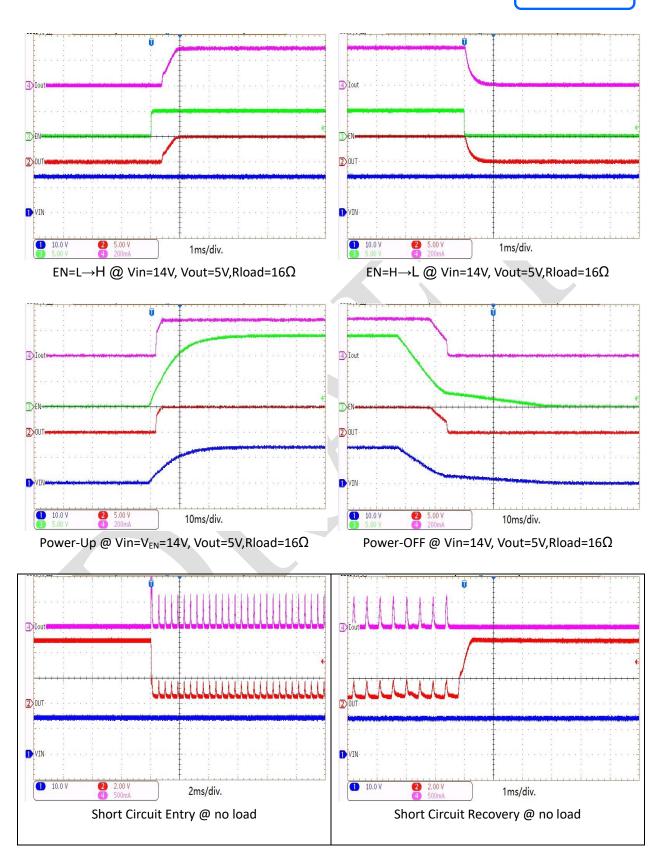

符号	参数	 测试 条 件	最小	典型	最大	单位
V	НВМ				±3	kV
VESD	CDM				±750	V

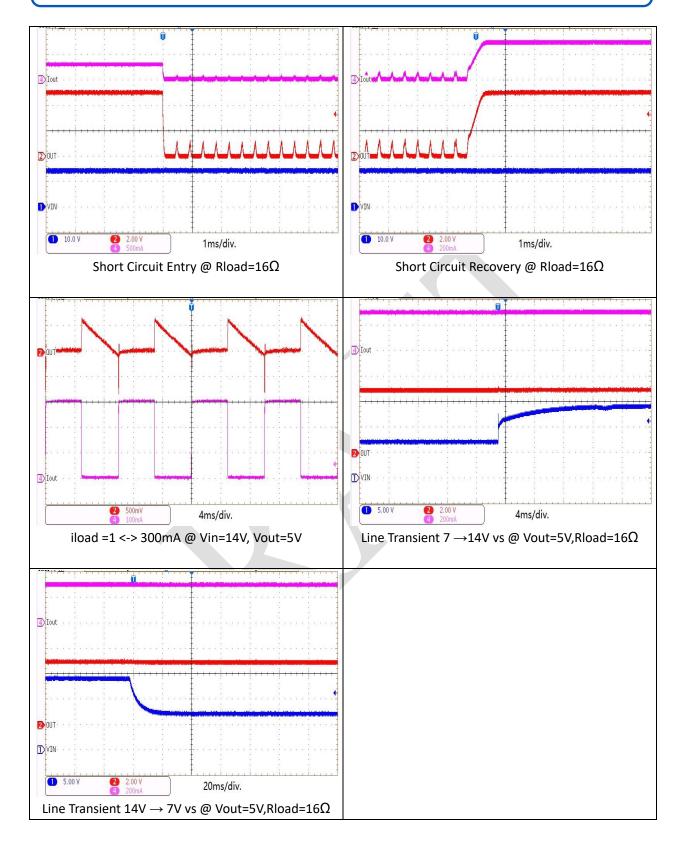



典型特性









典型工作波形

典型应用示例

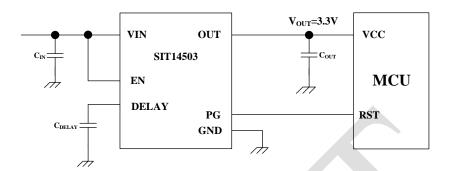


图 9 典型应用图

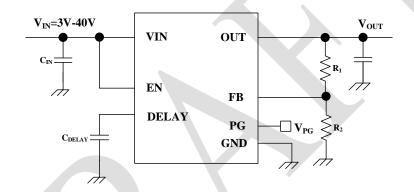
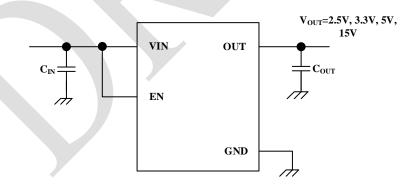
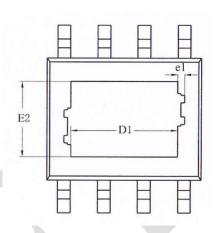
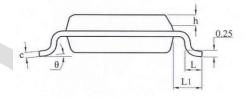
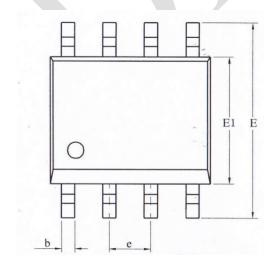


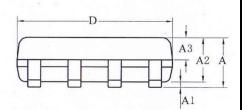
图 10 SIT14XXX/P 全功能应用图



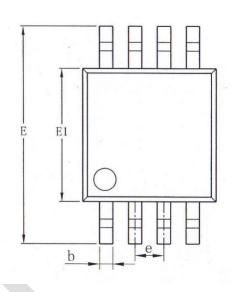

图 11 SIT14XXX/P 最简应用图

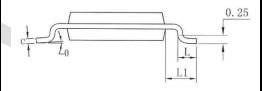


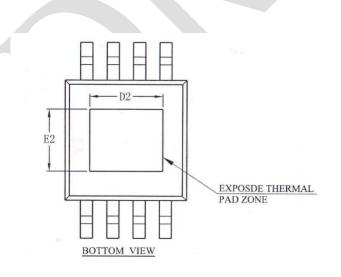

ESOP8 外形尺寸

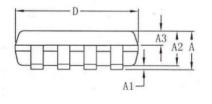

封装尺寸

到 教 八 \						
符号	最小值/mm	典型值/mm	最大值/mm			
A	-	-	1.65			
A1	0.05	-	0.15			
A2	1.30	1.40	1.50			
A3	0.60	0.65	0.70			
b	0.39	-	0.47			
С	0.20	-	0.24			
D	4.80	4.90	5.00			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
e		1.27BSC				
h	0.25		0.50			
L	0.50	0.60	0.80			
L1		1.05REF				
θ	0°	-	8°			

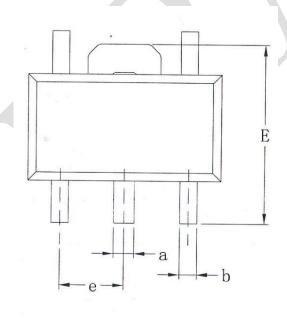


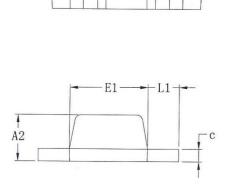



MSOP-EP8 外形尺寸


封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm		
A	-	-	1.10		
A1	0.05	-	0.15		
A2	0.75	0.85	0.95		
A3	0.30	0.35	0.40		
b	0.28	-	0.36		
С	0.15	-	0.19		
D	2.90	3.00	3.10		
Е	4.70	4.90	5.10		
E1	2.90	3.00	3.10		
e		0.65 BSC			
L	0.40	-	0.70		
L1	0.95REF				
θ	0°	-	8°		




SOT89-5 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A2	1.40	1.50	1.60
b	0.38	-	0.46
С	0.38	-	0.42
a	0.46	-	0.56
D	4.40	4.50	4.60
D1	1.62	-	1.83
Е	3.95	3.90	4.25
E1	2.40	2.50	2.60
e		1.50BSC	
L	0.89	-	1.20
L1		1.05REF	

封装热参数

符号	参数	封装类型	值	单位
D	热阻	MSOP-EP8	58	°C/W
$R_{ heta JA}$		SOT-89-5	37	°C/W
NT/	结顶表征参数	MSOP-EP8	3	°C/W
$\Psi_{ m JT}$		SOT-89-5	7	°C/W

注: ESOP8 在 JESD 51-7 2s2p(两层信号,两层电源)标准板,无风条件,2W 的功耗,25℃环境温度下测得。

定购信息

选型参考规则:

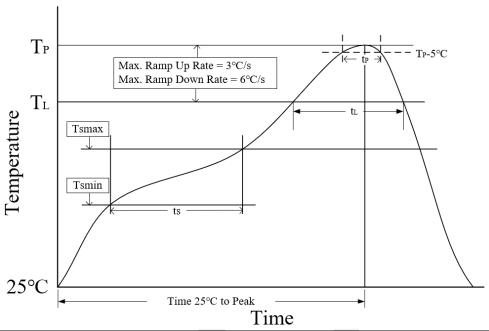
固定	输出电	压	输出电流	Ŋ	並用领域	封装类型	PG
SIT14	XX		X	X		X	X
SIT14	2.5V: 3.3V: 5V: 15V: 可调:	25 33 50 F0 AJ	150mA: 1 300mA: 3	A: Q:	工业级车规级	ESOP8: T MSOP-EP8: U SOT-89-5: S	是: P 否:

例:输出电压 2.5V,输出电流 100mA 车规级 PG 芯片,SOP8 封装:SIT14251QT/P

对应型号:

定购代码	封装	包装方式
SIT14251QT	ESOP8	盘装编带
SIT14251QU	MSOP-EP8	盘装编带
SIT14251QS	SOT-89-5	盘装编带
SIT14253QT	ESOP8	盘装编带
SIT14253QU	MSOP-EP8	盘装编带
SIT14253QS	SOT-89-5	盘装编带
SIT14331QT	ESOP8	盘装编带
SIT14331QU	MSOP-EP8	盘装编带
SIT14331QS	SOT-89-5	盘装编带
SIT14333QT	ESOP8	盘装编带
SIT14333QU	MSOP-EP8	盘装编带

定购代码	封装	包装方式
SIT14333QS	SOT-89-5	盘装编带
SIT14501QT	ESOP8	盘装编带
SIT14501QU	MSOP-EP8	盘装编带
SIT14501QS	SOT-89-5	盘装编带
SIT14503QT	ESOP8	盘装编带
SIT14503QU	MSOP-EP8	盘装编带
SIT14503QS	SOT-89-5	盘装编带
SIT14F01QT	ESOP8	盘装编带
SIT14F01QU	MSOP-EP8	盘装编带
SIT14F01QS	SOT-89-5	盘装编带
SIT14F03QT	ESOP8	盘装编带
SIT14F03QU	MSOP-EP8	盘装编带
SIT14F03QS	SOT-89-5	盘装编带
SIT14AJ1QT	ESOP8	盘装编带
SIT14AJ1QU	MSOP-EP8	盘装编带
SIT14AJ1QS	SOT-89-5	盘装编带
SIT14AJ3QT	ESOP8	盘装编带
SIT14AJ3QU	MSOP-EP8	盘装编带
SIT14AJ3QS	SOT-89-5	盘装编带
SIT14251QT/P	ESOP8	盘装编带
SIT14251QU/P	MSOP-EP8	盘装编带
SIT14251QS/P	SOT-89-5	盘装编带
SIT14253QT/P	ESOP8	盘装编带
SIT14253QU/P	MSOP-EP8	盘装编带
SIT14253QS/P	SOT-89-5	盘装编带
SIT14331QT/P	ESOP8	盘装编带
SIT14331QU/P	MSOP-EP8	盘装编带
SIT14331QS/P	SOT-89-5	盘装编带
SIT14333QT/P	ESOP8	盘装编带
SIT14333QU/P	MSOP-EP8	盘装编带
SIT14333QS/P	SOT-89-5	盘装编带
SIT14501QT/P	ESOP8	盘装编带
SIT14501QU/P	MSOP-EP8	盘装编带



定购代码	封装	包装方式
SIT14501QS/P	SOT-89-5	盘装编带
SIT14503QT/P	ESOP8	盘装编带
SIT14503QU/P	MSOP-EP8	盘装编带
SIT14503QS/P	SOT-89-5	盘装编带
SIT14F01QT/P	ESOP8	盘装编带
SIT14F01QU/P	MSOP-EP8	盘装编带
SIT14F01QS/P	SOT-89-5	盘装编带
SIT14F03QT/P	ESOP8	盘装编带
SIT14F03QU/P	MSOP-EP8	盘装编带
SIT14F03QS/P	SOT-89-5	盘装编带
SIT14AJ1QT/P	ESOP8	盘装编带
SIT14AJ1QU/P	MSOP-EP8	盘装编带
SIT14AJ1QS/P	SOT-89-5	盘装编带
SIT14AJ3QT/P	ESOP8	盘装编带
SIT14AJ3QU/P	MSOP-EP8	盘装编带
SIT14AJ3QS/P	SOT-89-5	盘装编带

SOT-89-5 编带式包装为 2500 颗/盘;

回流焊

参数	无铅焊接条件
平均温升速率(T _L to T _P)	3 °C/second max
预热时间 ts(T _{smin} =150 °C to T _{smax} =200 °C)	60-120 seconds
融锡时间 t _L (T _L =217 ℃)	60-150 seconds
峰值温度 Tp	260-265 °C
小于峰值温度 5 ℃以内时间 t _P	30 seconds
平均降温速率(T _P to T _L)	6 °C/second max
常温 25℃ 到峰值温度 Tp 时间	8 minutes max

重要声明

芯力特有权在不事先通知的情况下,保留更改上述资料的权利。

修订历史

版本号	修订内容	修订时间
V0.1	draft 版本。	2023.04
V0.2	增加短路保护; 增加典型特性; 增加 ESD 信息; 增加封装热参数信息; 调整格式。	2023.08

