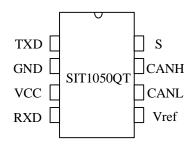
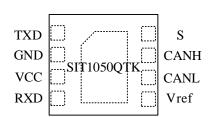


特点

- 产品外形示意图
- 完全兼容"ISO 11898"标准;
- AEC-Q100 认证;
- 内置过温保护;
- 过流保护功能;
- 显性超时功能;
- 静音模式;
- 未上电节点不干扰总线;
- 至少允许110个节点连接到总线;
- 高速 CAN, 传输速率可达到 1Mbps;
- ▶ 高抗电磁干扰能力;
- ▶ 提供 DFN3*3-8, 小外形, 无引脚封装。

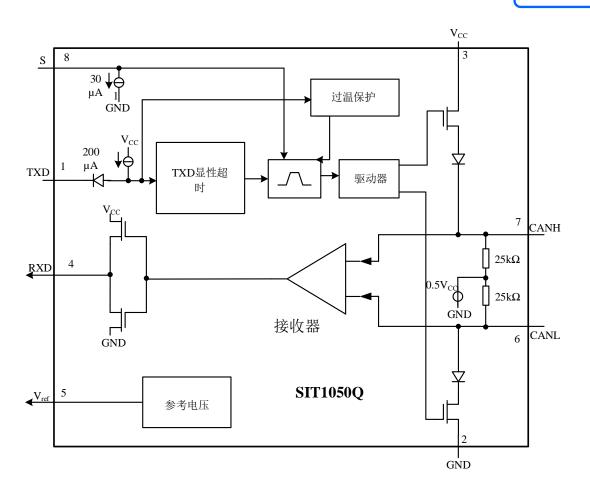

提供绿色环保无铅封装


描述

SIT1050Q 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于车载、工业控制 等领域,速率可达到 1Mbps,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力。

参数	符号	测试条件	最小	最大	单位
供电电压	V_{cc}		4.75	5.25	V
最大传输速率	1/t _{bit}	非归零码	1		Mbaud
CANH、CANL 输入输出电压	V_{can}		-40	+40	V
总线差分电压	$V_{ m diff}$		1.5	3.0	V
结温	$T_{\rm j}$		-40	150	°C
ESD 能力	$V_{\rm esd}$	人体模型(HBM)	±8		kV

引脚分布图



引脚定义

引脚序号	引脚名称	引脚功能
1	TXD	发送器数据输入端
2	GND	地
3	VCC	供电电源
4	RXD	接收器数据输出端
5	Vref	参考电压输出
6	CANL	低电位 CAN 电压输入输出端
7	CANH	高电位 CAN 电压输入输出端
8	S	高速与静音模式选择,低电平为高速

注: DFN3*3-8 封装,背面的焊盘与芯片 GDN 引脚是相连的,如需获得更好的散热性能,可以将背面焊盘与 PCB 板合适的"地"相连。

内部框图

极限参数

参数	符号	大小	单位
电源电压	V_{CC}	-0.3~+6	V
MCU 侧端口	TXD, RXD, Vref, S	-0.3~VCC+0.3	V
总线侧输入电压	CANL, CANH	-40~40	V
存储工作温度范围	$T_{ m stg}$	-55~150	°C
环境温度	T_{amb}	-40~125	°C
结温	$T_{\rm j}$	-40~150	°C
焊接温度范围		300	$^{\circ}\mathrm{C}$

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

总线发送器直流特性

参数	符号	测试条件	最小	典型	最大	单位
CANH 输出电压(显 性)	V _{OH(D)}	VI=0V, S=0V,	2.75	3.5	4.5	V
CANL 输出电压(显 性)	V _{OL(D)}	RL=60Ω, <u>图 1</u> 、 <u>图 2</u>	0.5	1.5	2.25	V
总线输出差分电压 (隐性)	$V_{O(R)}$	VI=3V, S=0V, RL=60Ω, <u>图 1</u> 、 <u>图 2</u>	2	2.5	3	V
总线输出差分电压 (显性)	$V_{\text{OD(D)}}$	VI=0V, S=0V, RL=60Ω, <u>图 1</u> 、 <u>图 2</u>	1.5		3	V
总线差分输出电压	T 7	VI=3V, S=0V, <u>图 1</u> 、 <u>图 2</u>	-0.012		0.012	V
(隐性)	$V_{\text{OD(R)}}$	VI=3V,S=0V, 无负载	-0.5		0.05	V
输出电压对称性	V_{TXsym}	$V_{TXsym} = V_{CANH} + V_{CANL}$	0.9V _{CC}		1.1V _{CC}	V
共模输出电压	V_{OC}	S=0V, <u>图 8</u>	2	2.5	3	V
显性隐性共模输出电 压差	$\triangle V_{OC}$			30		mV
		CANH=-12V, CANL=悬空, <u>图 11</u>	-105	-40		mA
行吸給山山滨	ī	CANH=12V, CANL=悬空, <u>图 11</u>		0.36	1	mA
短路输出电流	I_{OS}	CANL=-12V, CANH=悬空, <u>图 11</u>	-1	0.5		mA
		CANL=12V, CANH=悬空, <u>图 11</u>		40	105	mA
隐性输出电流	$I_{O(R)}$	-27V <canh<32v 0<vcc<5.25v< td=""><td>-2.0</td><td></td><td>2.5</td><td>mA</td></vcc<5.25v<></canh<32v 	-2.0		2.5	mA

(如无另外说明,Vcc=5V±5%,-40℃≤Tj≤150℃,典型值在 Vcc=+5V,Tamb=25℃测得)

总线发送器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延时(低到高)	$t_{\rm PLH}$	S=0V, <u>图 4</u>	25	65	120	ns
传播延时(高到低)	$t_{ m PHL}$		20	45	90	ns
差分输出上升延时间	tr			25		ns
差分输出下降延时间	tf			50		ns
从侦听模式到显性的 使能时间	$t_{ m EN}$	<u>图 7</u>			1	μs
显性超时时间	t _{dom}	<u>图 10</u>	300	450	700	μs

(如无另外说明,Vcc=5V±5%,-40℃≤Tj≤150℃,典型值在 Vcc=+5V,T_{amb}=25℃测得)

总线接收器直流特性

参数	符号	测试条件	最小	典型	最大	单位
正输入阈值	V_{IT^+}	S=0V, <u>图 5</u>		750	900	mV
负输入阈值	$V_{\text{IT-}}$		500	650		mV
比较器阈值迟滞区间	V_{HYS}		80	100		mV
高电平输出电压	V_{OH}	IO=-2mA, <u>图 6</u>	4	4.6		V
低电平输出电压	$ m V_{OL}$	IO=2mA, <u>图 6</u>		0.2	0.4	V
掉电时总线输入电流	$I_{(OFF)}$	CANH 或 CANL=5V, 其它引脚=0V		3	20	μΑ
CANH、CANL 对地 的输入电容	$C_{\rm I}$			13		pF
CANH、CANL 差分 输入电容	C_{ID}			5		pF
CANH、CANL 输入 电阻	R_{IN}	TXD=3V, S=0V	15	30	45	ΚΩ
CANH、CANL 差分 输入电阻	R_{ID}	120-30, 8-00	30		80	ΚΩ
RI(CANH)、 RIN(CANL)失配度	RI _{match}	CANH=CANL	-3%		3%	
共模电压范围	V_{COM}		-12		12	V

(如无另外说明, $V_{CC}=5V\pm5\%$,- $40^{\circ}C\leq T_{j}\leq 150^{\circ}C$,典型值在 $V_{CC}=+5V$, $T_{amb}=25^{\circ}C$ 测得)

总线接收器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延迟(低到高)	t _{PLH}	S=0V 或 VCC, <u>图 6</u>	60	100	130	ns
传播延迟(高到低)	$t_{ m PHL}$		45	70	100	ns
RXD 信号上升时间	tr			8		ns
RXD信号下降时间	tf			8		ns

(如无另外说明, $V_{CC}=5V\pm5\%$,-40°C $\leq T_{j}\leq 150$ °C,典型值在 $V_{CC}=+5V$, $T_{amb}=25$ °C测得)

器件开关特性

参数	符号	测试条件	最小	典型	最大	单位
环路延迟1,驱动器 输入到接收器输出, 隐性到显性	$t_{d(LOOP1)}$	<u>图 9</u> ,S=0V	90		190	ns
环路延迟 2,驱动器输入到接收器输出,显性到隐性	$t_{d(LOOP2)}$		90		190	ns

(如无另外说明, $V_{CC}=5V\pm5\%$,- $40^{\circ}C\le T_{j}\le 150^{\circ}C$,典型值在 $V_{CC}=+5V$, $T_{amb}=25^{\circ}C$ 测得)

过温保护

参数	符号	测试条件	最小	典型	最大	单位
过温关断	$T_{j(sd)}$			160		°C

TXD 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
TXD 端口高电平输 入电流	I _{IH} (TXD)	VI=VCC	-2		2	μΑ
TXD 端口低电平输 入电流	I _{IL} (TXD)	VI=0	-50		-10	μΑ
VCC=0V 时, TXD 的 电流	I _O (off)	VCC=0V, TXD=5V			1	μΑ
输入高电平下限	$V_{ m IH}$		2		VCC+0.3	V
输入低电平上限	V_{IL}		-0.3		0.8	V

5V 供电,±40V 接口耐压,1Mbps 高速 CAN 总线收发器

参数	符号	测试条件	最小	典型	最大	单位
TXD 端口悬空电压	TXDo			Н		logic

(如无另外说明, $V_{CC}=5V\pm5\%$,-40°C $\leq T_{j}\leq 150$ °C,典型值在 $V_{CC}=+5V$, $T_{amb}=25$ °C测得)

STB 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
高电平输入电压	$V_{ m IH}$		2.0		VCC+0.3	V
低电平输入电压	V_{IL}		-0.3		0.8	V
高电平输入电流	$ m I_{IH}$	$V_S=2V$	15	30	60	μΑ
低电平输入电流	${ m I}_{ m IL}$	$V_S=0.8V$	5	15	30	μΑ

参考电压输出

参数	符号	测试条件	最小	典型	最大	单位
参考输出电压	Vref	-50uA <i<sub>0<50uA</i<sub>	$0.4 V_{\rm CC}$		$0.6V_{\rm CC}$	V

(如无另外说明, $V_{CC}=5V\pm5\%$,- $40^{\circ}C\leq T_{j}\leq 150^{\circ}C$,典型值在 $V_{CC}=+5V$, $T_{amb}=25^{\circ}C$ 测得)

供电电流

参数	符号	测试条件	最小	典型	最大	单位
静音模式功耗	I_{CC}	S=VCC, V _I =VCC		3.6	10	mA
显性功耗		V _I =0V, S=0V, 负载=60Ω		38	70	mA
隐性功耗		V _I =VCC, S=0V, 无负载		3.6	10	mA

(如无另外说明, $V_{CC}=5V\pm5\%$,- $40^{\circ}C\leq T_{j}\leq 150^{\circ}C$,典型值在 $V_{CC}=+5V$, $T_{amb}=25^{\circ}C$ 测得)

功能表

表 1 CAN 收发器真值表

Vcc	TXD (1)	S ⁽¹⁾	CANH (1)	CANL (1)	BUS STATE	RXD (1)
4.5V~5.5V	L	L(或浮空)	Н	L	显性	L
4.5V~5.5V	H(或浮空)	X	$0.5 V_{\rm CC}$	$0.5 V_{\rm CC}$	隐性	Н
4.5V~5.5V	X	Н	$0.5V_{\rm CC}$	$0.5V_{\rm CC}$	隐性	Н
0 <v<sub>CC<4.5V</v<sub>	X	X	$0V < V_{CANH} < V_{CC}$	$0V < V_{CANL} < V_{CC}$	隐性	X

⁽¹⁾ H=高电平; L=低电平; X=不关心。

表 2 驱动器功能表

INPUTS		OUT	OUTPUTS		
TXD (1)	S ⁽¹⁾	CANH (1)	CANL (1)	- Bus State	
L	L(或浮空)	Н	L	Dominate (显性)	
H(或浮空)	X	Z	Z	Recessive (隐性)	
X	Н	Z	Z	Recessive (隐性)	

⁽¹⁾ H=高电平; L=低电平; Z=高阻; X=不关心。

表 3 接收器功能表

V _{ID} =CANH-CANL	RXD (1)	Bus State
V _{ID} ≥0.9V	L	Dominate(显性)
0.5< V _{ID} <0.9V	?	?
V _{ID} ≤0.5V	Н	Recessive (隐性)
Open	Н	Recessive (隐性)

⁽¹⁾ H=高电平; L=低电平; ?=不确定。

测试电路

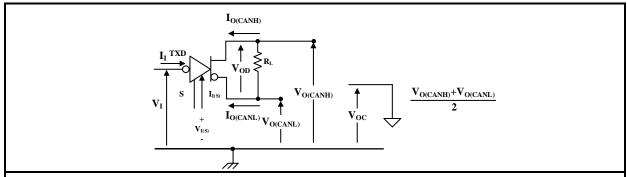
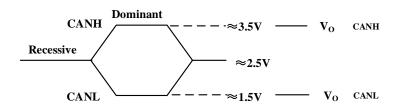
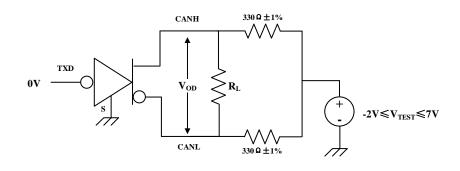




图 1 驱动器电压、电流测试定义

图 2 总线逻辑电压定义

图 3 驱动器 VOD 测试电路

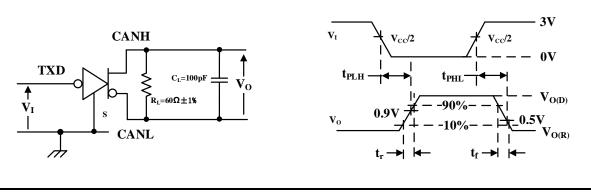
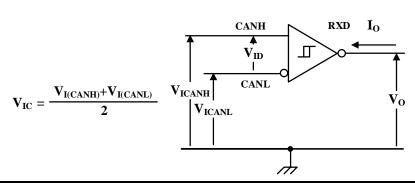
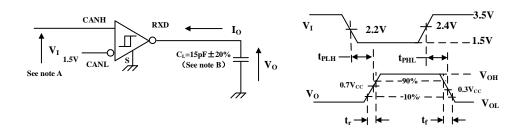




图 4 驱动器测试电路与电压波形

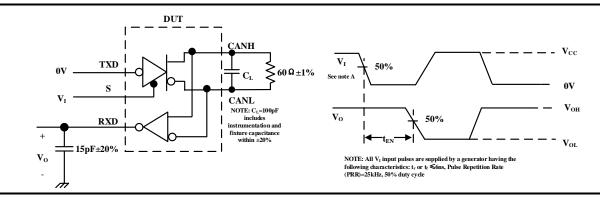
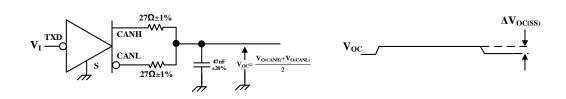
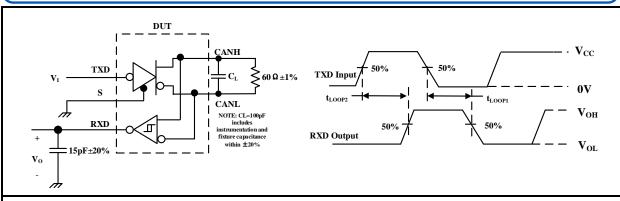


图 5 接收器电压与电流定义



- A、 输入脉冲产生器特点: PRR≤125kHz, 50%占空比, tr<6ns, tf<6ns, Zo=50Ω
- B、 CL 包括仪器与固定电容,误差在 20%以内。

图 6 接收器测试电路与电压波形


图 7 ten 测试电路与电压波形

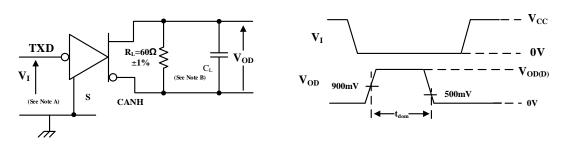

注: VI 从 0~VCC,输入脉冲产生器特点: PRR≤125kHz,50%占空比,tr<6ns,tf<6ns, Zo=50Ω

图 8 共模输出电压测试与波形

图 9 t_(LOOP)测试电路与波形

- A、 输入脉冲产生器特点: PRR≤125kHz, 50%占空比, tr<6ns, tf<6ns, Zo=50Ω。
- B、 CL 包括仪器与固定电容,误差在 20%以内。

图 10 显性超时测试电路与波形

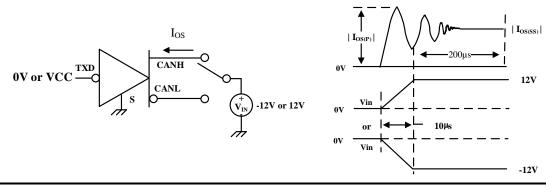


图 11 驱动器短路电流测试电路与波形

说明

1 简述

SIT1050Q 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于车载、工业控制等领域,速率可达到 1Mbps,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力,完全兼容"ISO 11898"标准。

2 短路保护

SIT1050Q 的驱动级具有限流保护功能,以防止驱动电路短路到正和负的电源电压,发生短路时功耗会增加,短路保护功能可以保护驱动级不被损坏。

3 过温保护

SIT1050Q 具有过温保护功能,过温保护触发后,驱动级的电流将减小,因为驱动管是主要的耗能部件,电流减小可以降低功耗从而降低芯片温度。同时芯片的其它部分仍然保持正常工作。

4 显性超时功能

如果引脚 TXD 因硬件和(或)软件应用故障而被强制为永久低电平,内置的 TXD 显性超时定时器电路可防止总线线路被驱动至永久显性状态(阻塞所有网络通信)。定时器由引脚 TXD 上的负沿触发。

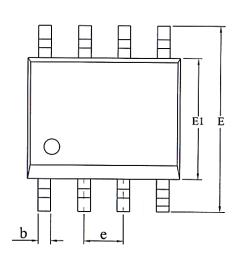
如果引脚 TXD 上的低电平持续时间超过内部定时器值(t_{dom}),发送器将被禁用,驱动总线进入 隐性状态。定时器通过引脚 TXD 上的正边沿复位。

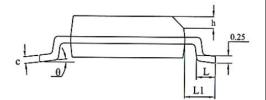
5 控制模式

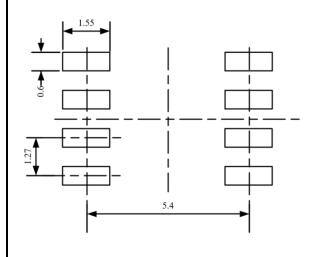
控制引脚 S 允许选择两种工作模式:

高速模式或静音模式。

高速模式是正常工作模式,通过将引脚 S 接地来选择。如果引脚 S 未连接,则它是默认模式。但是,为了确保仅使用高速模式的应用中的 EMI 性能,建议将引脚 S 接地。

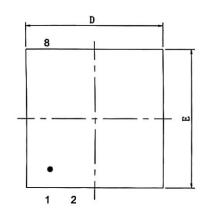

在静音模式下,发射器被禁用。所有其他 IC 功能继续运行。静音模式通过将引脚 S 连接到 VCC 来选择,并可用于防止由于 CAN 控制器失控而导致的网络通信阻塞。

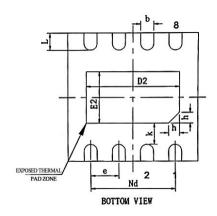


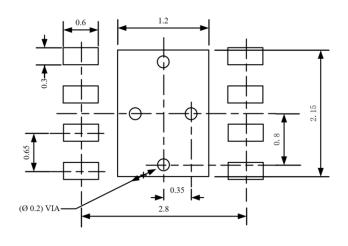

SOP8 外形尺寸

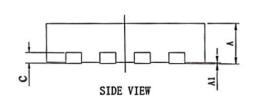
封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	1.40	-	1.80
A1	0.10	-	0.25
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.38	-	0.51
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
e		1.27BSC	
L	0.40	0.60	0.80
L1	1.05REF		
С	0.20	-	0.25
θ	0°	-	8°

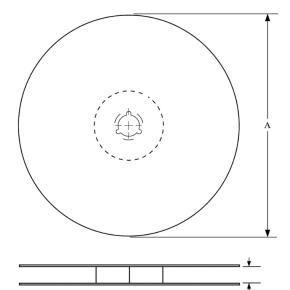


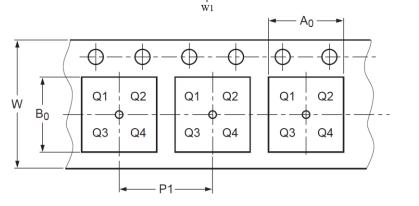

LAND PATTERN EXAMPLE (Unit: mm)


DFN3*3-8 外形尺寸


封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm		
A	0.70	0.75	0.80		
A1	0	0.02	0.05		
A3		0.203 REF			
D	2.90	3.00	3.10		
Е	2.90	3.00	3.10		
D2	2.05	2.15	2.25		
Nd		1.95BSC			
E2	1.10	1.20	1.30		
b	0.25	0.30	0.35		
e		0.65 TYP			
k	0.50REF				
L	0.35	0.4	0.45		
h	0.20	0.25	0.30		



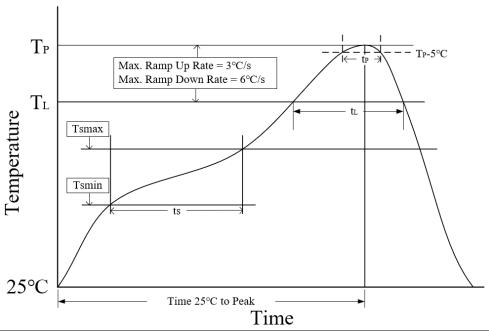

LAND PATTERN EXAMPLE (Unit: mm)

编带信息

A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Direction of Feed


封装类型	卷盘直径	编带宽度	A0	В0	K0	P1	W
	A (mm)	W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)
SOP8	330±1	12.4	6.60±0.1	5.30±0.10	1.90±0.1	8.00±0.1	12.00±0.1
DFN3*3-8	329±1	12.4	3.30±0.1	3.30±0.1	1.10±0.1	8.00±0.1	12.00±0.3

订购信息

定购代码	封装	包装方式
SIT1050QT	SOP8	盘装编带
SIT1050QTK	DFN3*3-8, 小外形,无引脚	盘装编带

SOP8 编带式包装为 2500 颗/盘, DFN3*3-8 编带式包装为 6000 颗/盘。

回流焊

参数	无铅焊接条件
平均温升速率(T _L to T _P)	3 °C/second max
预热时间 ts(T _{smin} =150 ℃ to T _{smax} =200 ℃)	60-120 seconds
融锡时间 t _L (T _L =217 ℃)	60-150 seconds
峰值温度 Tp	260-265 °C
小于峰值温度 5 ℃以内时间 tp	30 seconds
平均降温速率(T _P to T _L)	6 °C/second max
常温 25℃ 到峰值温度 T _P 时间	8 minutes max

重要声明

芯力特有权在不事先通知的情况下,保留更改上述资料的权利。

修订历史

版本号	修订内容	修订时间
V1.0	初始版本。	2021.06
V1.1	删除 CANH、CANL 瞬态电压参数; 修改发送器特性传播延时; 修改 CANH、CANL 差分输入电容; 修改 CANH、CANL 差分输入电阻; 增加 STB 引脚特性; 修改 SOP8 封装尺寸; 修改 DFN3*3-8 封装尺寸;	2022.02
V1.2	修改 CANH 输出电压(显性)、CANL 输出电压(显性)范围;增加芯片焊盘信息;增加编带信息;增加回流焊信息;增加回流焊信息;增加回流焊信息;	2022.07
V1.3	增加环境温度 T_{amb} ; 更新结温 T_j 范围; 更新封装尺寸图 (尺寸不变)。	2023.04